Sorption of silver (I) in the presence of palladium (II) and gold (III) from hydrochloric acid solutions by poly(N-vinylimidazole) cross-linked with 1,4-bis(bromomethyl)benzene
Abstract
The sorption of silver (I) by a material based on poly(N-vinylimidazole) crosslinked with 1,4-bis(bromomethyl) has been studiedbenzene from hydrochloric acid solutions of various compositions, including in the presence of gold (III) and palladium (II). The study was carried out using a limited volume method from solutions with a concentration of hydrochloric acid from 1 to 3 mol/dm3, at an initial concentration of metal ions 5·10-5-1·10-4 mol/dm3 (sorbent – 0.0200 g, Solution – 50.0 cm3). The metal ion content in the solutions was determined by atomic absorption spectroscopy. As a result of the conducted studies, it was found that poly(N-vinylimidazole) silver (I) is extracted to the greatest extent from 1 mol/dm3 HCl. In this case, selective extraction of silver (I) in the presence of gold (III) and palladium (II) by poly(N-vinylimidazole) under static conditions is not achieved. It is shown that 120 minutes of phase contact is sufficient to achieve sorption equilibrium in the noble metal salt solution – sorbent systems. The use of 3.5 mol/dm3 hydrochloric acid, 0.1 mol/dm3 ammonia solution and 1% thiourea solution in 2 mol/dm3 HCl as regenerants does not allow achieving quantitative desorption of metals from the sorbent (the maximum value of the degree of desorption is < 80%).
The dynamics of sorption was studied by passing a solution with a concentration of noble metals
5·10-5 mol/dm3 through a concentrating cartridge containing 0.1000 g of sorbent. The flow rate of the solution was 2 cm3/min. It was found that under these conditions, the sorbent under study jointly extracts silver (I) and gold (III) from 1 mol/dm3 HCl. To separate them, a sequential elution method is proposed, including the use of an ammonium rhodanide solution with a concentration of 0.5 mol/dm3, followed by a 1% thiourea solution in 2 mol/dm3 HCl. It is shown that the separation of silver (I) and gold (III) is achieved under these conditions. However, the selection of the optimal eluent for quantitative desorption of gold from poly(N-vinylimidazole) requires additional research.
Downloads
References
Coruh S.A., Senel G., Ergun O.N. J. Hazard. Mater., 2010; 180(1-3): 486-492. https://doi.org/10.1016/j.jhazmat.2010.04.056.-
Behbahani M., Najafi F., Amini M.M., Sadeghi O., Hassanlou P.G. J. Ind. and Eng. Chem., 2014; 20(4): 2248-2255. https://doi.org/10.1016/j.jiec.2013.09.057.
Chakrabortya S. C., Qamruzzamana M., Zaman M.W.U. Process Saf. Environ. Prot., 2022; 162: 230-252. https://doi.org/10.1016/j.psep.2022.04.011
Pawlak J., Lodyga-Chruscinska E., Chrustowicz J., J. Trace Elem. Med Biol., 2014; 28(3): 247-254. https://doi.org/10.1016/j.jtemb.2014.03.005
Petrenko D.B. Elements of the platinum group in the environment and their ecological danger, Bulletin of Moscow State University. Series "Natural Sciences", 2011; 5: 49-53 https://www.elibrary.ru/oyxhor
Skalny A.V. Chemical elements in hu-man physiology and ecology. M., Mir, 2004, 216 p. (In Russ.)
Alifkhanova L.M., Lopunova K.Ya., Marchuk A.A., Petrova Yu.S., Pestov A.V., Neudachina L.K., J. Inorg. Chem, 2021; 66(6): 814-821. https://doi.org/10.31857/S0044457X21060027.
Petrova Yu.S, Alifkhanova L.M., Kuz-netsova K.Ya., Neudachina L.K., Pestov A.V., Sorbtsionnye i khromatograficheskie protsessy, 2023; 22(5): 737-747. https://doi.org/10.17308/sorpchrom.2022.22/10716 (In Russ.)
9. Bratskaya S.Yu., Azarova Yu.A., Ma-tochkina E.G., Kodess M.I., Yatluk Yu.G., Pestov A.V. N-(2-(2-pyridyl)ethyl)chitosan: Synthesis, characterization and sorption proper-ties, Carbohydr. Polym, 2012; 87: 869-875. https://doi.org/10.1016/j.carbpol.2011.08.081
Sipkina E.I., Proceedings of universi-ties. applied chemistry and biotechnology. 2015; 4(15): 7-19. (In Russ.)
Kononova O.N., Duba E.V., Medovikov D.V., Efimova A.S., Ivanov A.I., Krylov A.S. J. Phys. Chem., 2017; 91(12): 2091-2096. https://doi.org/10.1134/S0044453718100138
Kononova O.N., Duba E.V., Medovikov D.V., Krylov A.S. J. Phys. Chem., 2018; 92(10): 1641-1647. https://doi.org/10.1134/S0044453718100138
Kononova O.N., Duba E.V., Efimova A.S., Ivanov A.I., Krylov A.S. J. Phys. Chem., 2020; 94(4): 602-609. https://doi.org/10.31857/S004445372004007X
Kuznetsova K.Ya., Yakurnova O.D., Kazantsev D.A., Petrova Yu.S., Pestov A.V., Neudachina L.K. J. Appl. Chem., 2024; 97(11-12): 776-782. https://doi.org/10.31857/S0044461824110057
Zhou L., Liu J., Liu Z. J. Hazard. Mat., 2009; 172: 439-446. https://doi.org/10.1016/j.jhazmat.2009.07.030
Alifkhanova L.M., Petrova Yu. S., Kuz-netsova K.Ya, Zemlyakova E. O., Pestov A.V., Neudachina L.K. J. Appl. Chem., 2022; 95(3): 399-408. https://doi.org/10.31857/S0044461822030136
Hubicki Z., Wolowicz A. Hydrometal-lurgy, 2009; 96(1-2): 159-165. http://dx.doi.org/10.1016/j.hydromet.2008.10.002
Fujiwara K., Ramesh A., Maki T., Ha-segawa H., Ueda K. J. Hazard. Mater., 2007; 146(1-2): 39-50. https://doi.org/10.1016/j.jhazmat.2006.11.049
Parodi A., Vincent T., Pilsniak M., Trochimczuk A., Guibal E. Hydrometallurgy., 2008; 92(1-2): 1-10. https://doi.org/10.1016/j.hydromet.2008.02.005
Kapitanova E.I., Sinelshchikova A.R., Petrova Yu.S., Zemlyakova E.O., Pestov A.V., Neudachina L.K. Russ. Chem. Bull. (Int. Ed.), 2021; 70(6): 1161-1166. https://doi.org/10.1007/s11172-021-3199-y
Petrova Yu.S., Pestov A.V., Kapitanova E.I., Usoltseva M.K., Neudachina L K. Sep. Purif. Technol., 2019; 213: 78-87. https://doi.org/10.1016/j.seppur.2018.12.025
Staron P., Chwastowski J., Banach M. J. Clean. Prod., 2017; 149: 290-301. https://doi.org/10.1016/j.jclepro.2017.02.116
Junior W.N., Landers R., Silva M.C., Vieira M.G. J. Environ. Chem. Eng., 2021; 9: 104840. https://doi.org/10.1016/j.jece.2020.104840
Liu P., Wang X., Tian L., He B. J. Wa-ter Process Eng., 2020; 34: 101184. http://dx.doi.org/10.1016/j.jwpe.2020.101184




