Polymer-based anion exchanger with adsorbed graphene oxide layer: analytical and thermodynamic characterization

  • Arsenii A. Timichev Lomonosov Moscow State University, Moscow, Russian Federation
  • Ekaterina S. Chichkanova Lomonosov Moscow State University, Moscow, Russian Federation
  • Alexander V. Kaplin Lomonosov Moscow State University, Moscow, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow
  • Anastasiia V. Gorbovskaia Lomonosov Moscow State University, Moscow, Russian Federation
  • Andrey V. Pirogov Lomonosov Moscow State University, Moscow, Russian Federation
  • Oleg A. Shpigun Lomonosov Moscow State University, Moscow, Russian Federation
  • Anna S. Uzhel Lomonosov Moscow State University, Moscow, Russian Federation
Keywords: ion chromatography, anion exchanger, polystyrene-divinylbenzene, graphene oxide, thermodynamics

Abstract

The aim of this work was to obtain a novel stationary phase for ion chromatography with an adsorbed graphene oxide and to study its properties. For this purpose, a copolymer of styrene and divinylbenzene was modified by adsorbing a layer of graphene oxide onto its surface followed by its reduction. A copolymer of a primary amine with a diepoxide obtained in situ and electrostatically fixed on the surface of the modified substrate served as a basement layer. The positively charged ion-exchange centers were obtained by alkylating the tertiary amino groups of the basement layer with diepoxide and further aminating with a tertiary amine.

The retention mechanism of some analytes was studied by constructing bilogarithmic dependences of ion retention factors on the eluent concentration. It was shown that the approach used in the work to the synthesis of anion exchangers leads to the implementation of a predominantly ion-exchange mechanism of retention of not only polarizable (Br-, NO3, ClO3-), but also strongly polarizable anions (I-, SCN-, ClO4-). For the studied analytes, the apparent ion-exchange constants or corrected equilibrium coefficients were calculated, and the closeness of the retention times calculated with their help to the experimental data was shown.

The obtained stationary phase showed a significant decrease in selectivity in NO3-/Cl- and NO3-/Br- pairs and an increase in the efficiency of the bromide and nitrate peaks (N(NO3-) = 42000 TP/m) relative to the chemically modified resins described in the literature with a similar structure of the ion-exchange layer. This indicates the prospects of preliminary adsorption of graphene oxide followed by electrostatic attachment of an ion-exchange layer on its surface in order to increase the hydrophilicity of the stationary phase and the shielding degree of the polymer substrate. The possibility of rapid separation of 7 standard inorganic anions (F-, Cl-, NO2-, Br-, NO3-, SO42-, PO43-) in 7 min in the gradient elution mode using a hydroxide eluent was demonstrated. The obtained resin was successfully used for the analysis of drinking water and soil: high intra- and inter-day reproducibility was demonstrated and the accuracy was confirmed by the spike recovery experiment.

Downloads

Download data is not yet available.

Author Biographies

Arsenii A. Timichev, Lomonosov Moscow State University, Moscow, Russian Federation

the postgraduate student, department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, timsenin@gmail.com

Ekaterina S. Chichkanova, Lomonosov Moscow State University, Moscow, Russian Federation

student, department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, chichkanova.ekaterina@mail.ru

Alexander V. Kaplin, Lomonosov Moscow State University, Moscow, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow

Junior Researcher, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia; the postgraduate student, department of Inorganic chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, alex1997kaplin@gmail.com

Anastasiia V. Gorbovskaia, Lomonosov Moscow State University, Moscow, Russian Federation

Researcher, Ph.D (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, gorbovskaya_av@mail.ru

Andrey V. Pirogov, Lomonosov Moscow State University, Moscow, Russian Federation

prof., Dr. habil. (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, newandry@mail.ru

Oleg A. Shpigun, Lomonosov Moscow State University, Moscow, Russian Federation

Chief Researcher, Dr. habil. (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, shpiguno@yandex.ru

Anna S. Uzhel, Lomonosov Moscow State University, Moscow, Russian Federation

к.х.н., с.н.с. кафедры аналитической химии, Московский государственный университет им. М.В. Ломоносова, химический факультет, Москва, Россия, anna_uzhel@analyt.chem.msu.ru

References

Weiss J. Handbook of ion chromatog-raphy. 4 ed. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2016, 1576 p. https://doi.org/10.1002/9783527651610

Pohl C.A., Stillian J.R., Jackson P.E. J. Chromatogr. A, 1997; 789(1-2): 29-41. https://doi.org/10.1016/S0021-9673(97)00705-X

Zatirakha A.V., Uzhel A.S., Smo-lenkov A.D., Shpigun O.A. Mosc. Univ. Chem. Bull., 2017; 72(6): 289-302. https://doi.org/10.3103/S002713141801008X

Shchukina O.I., Zatirakha A. V., Smo-lenkov A.D., Nesterenko P.N., Shpigun O.A., Chromatographia, 2015; 78: 147-155. https://doi.org/10.1007/s10337-014-2831-5

Pohl C., Saini C., J. Chromatogr. A, 2008; 1213(1): 37-44. https://doi.org/10.1016/j.chroma.2008.10.072

Zhang K., Zhao Y., Ye M., Lou C., Zhu Y. J. Chromatogr. A, 2022; 1682: 463498. https://doi.org/10.1016/j.chroma.2022.463498

Yu X., Lei X., Zhu Y., Zhao Q. Micro-chim. Acta, 2022; 189: 239. https://doi.org/10.1007/s00604-022-05324-3

Kaplin A.V., Rebrikova A.T., Eremina E.A., Chumakova N.A., Avramenko N.V., Korobov M.V. Membranes, 2023; 13: 53. https://doi.org/10.3390/membranes13010053

Liang X., Hou X., Chan J.H.M., Guo Y., Hilder E.F., Trends Anal. Chem., 2018; 98: 149-160. https://doi.org/10.1016/j.trac.2017.11.008

Zhang K., Cao M., Lou C., Wu S., Zhang P., Zhi M., Zhu Y. Anal. Chim. Acta, 2017; 970: 73–81. https://doi.org/10.1016/j.aca.2017.03.015

McCalley D.V. J. Chromatogr. A, 2010; 1217(20): 3408-3417. https://doi.org/10.1016/j.chroma.2010.03.011

Schuster G., Lindner W., J. Chroma-togr. A, 2013; 1301: 98-110. https://doi.org/10.1016/j.chroma.2013.05.065

Khrisanfova A., Smagina M., Maksi-mov G., Tsizin G., Shpigun O., Chernobrovki-na A. J. Chromatogr. A, 2025; 1758: 466201. https://doi.org/10.1016/j.chroma.2025.466201

Ivanov V.A., Karpyuk E.A., Sorbtsionnye I Khromatograficheskie Protsessy, 2015; 15(1): 19-34. https://doi.org/10.17308/sorpchrom.2015.15/251

Gorbovskaia А.V., Talipova I.I., Timichev А.А., Uzhel А.S., Shpigun O.А., Ind. Lab. Diagn. Mater., 2023; 89(10): 19-24. https://doi.org/10.26896/1028-6861-2023-89-10-19-24

Gorbovskaya A.V., Popkova E.K., Uzhel' A.S., Shpigun O.A., Zatirakha A.V. J. Anal. Chem., 2023; 78: 748-758. http://dx.doi.org/10.1134/s1061934823060060

Marcano D.C., Kosynkin D. V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Ale-many L.B., Lu W., Tour J.M. ACS Nano, 2010; 4(8): 4806-4814. https://doi.org/10.1021/nn1006368

Shen Y., Zhu X., Zhang F., Yang B., J. Chromatogr. A, 2025; 1746: 465792. https://doi.org/10.1016/j.chroma.2025.465792

Uzhel A.S., Shchukina O.I., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Mosc. Univ. Chem. Bull., 2015; 70: 19-27. https://doi.org/10.3103/S0027131415010083

Chernova M.V., Shashnina G.V., Pi-rogov A.V., Shpigun O.A., Moscow Univ. Chem. Bull., 2004; 45(1): 27-30.

Zatirakha A.V., Smolenkov A.D., D’yachkov I.A., Shpigun O.A. Univ. Chem. Bull., 2011; 52(5): 375-381.

Published
2025-12-16
How to Cite
Timichev, A. A., Chichkanova, E. S., Kaplin, A. V., Gorbovskaia, A. V., Pirogov, A. V., Shpigun, O. A., & Uzhel, A. S. (2025). Polymer-based anion exchanger with adsorbed graphene oxide layer: analytical and thermodynamic characterization. Sorbtsionnye I Khromatograficheskie Protsessy, 25(5), 739-749. https://doi.org/10.17308/sorpchrom.2025.25/13425