Quantum-chemical modeling of the interactions of ethylene glycol and carbon nanoparticles
Abstract
Quantum-chemical calculation of the energy of adsorption of ethylene glycol on the C60 fullerene, carbon nanotubes chirality (4,4) and (6,6) with open ends and the chirality of a CNT (5.5) with a closed end cap fullerene was performed to investigate the adsorption properties of carbon nanoparticles ( CNP) to ethylene glycol (EG).
Optimization of structures was carried out using the program Gaussian 09 by B3LYP/6-31G (d, p), taking into account the dispersion GD3 amendment. Accounting dispersion correction allows to get the energy of sorption properties of CNP with an increase in the accuracy of the simulated matches sorbent characteristics with the properties of the sorbent since real CNP possess high polarizability. Ethylene glycol was placed in two ways: on the outer side and the end of the nanotube structures in the starting CNT-EG.
The main reasons for the adsorption of ethylene carbon nanoparticles are hydrophobic and van der Waals interactions. The contribution of van der Waals interactions caused by high polarizability CNP. The calculated energy of adsorption on the carbon nanoparticles EG range from 9 to 13 kcal/mol in the gas phase and from 8 to 10 kcal/mol in an aqueous medium. The calculated energy of adsorption of ethylene glycol at a closed end and a side surface of the CNT is less than those of the open ends of the nanoparticles. Quantumchemical modeling showed that the adsorption of ethylene on the open ends of the nanotubes is more likely than on the side surfaces of CNTs.
Downloads
References
Widmalm G., Pastor R.W., J. Chem. Soc., Faraday Trans., 1992, Vol. 88, No 13, pp. 1747-1754. DOI: 10.1039/FT9928801747.
2.
Liu M.S., Lin M.C., Huang I.T., Wang C.C., Int. Commun. Heat Mass Transfer, 2005, Vol. 32, No 9, pp. 1202-1210. doi:10.1016/j.icheatmasstransfer.2005.05.005
3.
Vaisman L., Marom G., Wagner H.D., Adv. Funct. Mater., 2006, Vol. 16, No 3, pp. 357363.
DOI: 10.1002/adfm.200500142.
4.
Hirsch A., Vostrowsky O., Top Curr Chem., 2005, Vol. 245, pp. 193-237.
5.
Rakov Je.G., Nanotrubki i fullereny.M., Logos, 2006, 376 p.
6.
Lovall D. et al., Phys. Rev. B, 2000, Vol. 61, No 8, pp. 5683. DOI: 10.1103/PhysRevB.61.5683.
7.
Xue Z.Q. et al., Mater. Sci. Eng. C., 2000, Vol. 16, No 1-2, pp. 17-21. DOI: 10.1016/S0928-4931(01)00290-9.
8.
Liu W. et al., Ultramicroscopy, 2003, Vol. 94, No 3-4, pp. 175-182. DOI:10.1016/S03043991(02)00262-0.
9.
Frisch M. J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. – Gaussian, Inc., Wallingford CT, 2009.
10.
Butyrskaja E.V., Komp'juternaja himija: osnovy teorii i rabota s programmami Gaussian i GaussView, M., Solon, Press, 2011, 224 p.
11.
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys., 2010, Vol. 132, pp. 154104. DOI: 10.1063/1.3382344.
12. http://www2.sscc.ru
13.
Foresman J.B. et al., J. Phys. Chem., 1996, Vol. 100, No 40, pp. 16098-16104. DOI: 10.1021/jp960488j.
14.
Wang X., Liu Y., Tao S., Xing B., Carbon, 2010, Vol. 48, No 13, pp. 3721-3728. DOI: 10.1016/j.carbon.2010.06.034.