Physicochemical properties and surface morphology of heterogeneous ion-exchange membranes after temperature modification

  • Elmara M. Akberova PhD (Сhem.), leading engineer of Department of Analytical Chemistry, Voronezh State University, Voronezh. E-mail: elmara_09@inbox.ru.
  • Vladimir I. Kolganov the chemist of PJSC "Pigment", Tambov.
  • Dmitriy V. Korotkov the student of chemical faculty, Voronezh State University, Voronezh.
  • Sergey V. Babichev the student of chemical faculty, Voronezh State University, Voronezh.
Keywords: heterogeneous ion-exchange membrane, temperature treatment, surface morphology, physicochemical properties

Abstract

Changes in physicochemical properties of heterogeneous ion-exchange membranes as a result of prolonged exposure of elevated temperatures are caused by changes of their microstructure due to the partial destruction of the ion-conductive and inert polymers. The most significant changes in the structure due to temperature effects on the heterogeneous ion-exchange membranes: an increase in macroporosity; increase in the share and the linear dimensions of the ion exchangers; the development of micro-relief and an increase in surface roughness factor were found by the microscopic analysis methods using the original authoring software. The revealed microstructure changes explain the reasons for increasing the water content of the membranes against the backdrop of a partial loss of their exchange capacity. By comparative analysis of physicochemical and structural properties of strongly anion-exchange membranes after temperature modification it was established that lowering of the total exchange capacity and the relative contribution of degradation reactions in loss of capacity for strongly basic groups fall with decreasing of polymer matrix crosslinking degree and increasing specific water capacity of membranes.

Downloads

Download data is not yet available.

References

1. Saldadze K.M., Klimova S.V., Titova N.A., Bazikova G.D., Ionoobmennyye membrany v elektrodialize. L., 1970, pp. 65-75.
2. Berezina N.P., Ivina O.P., Rubinina D.V., Krasnodar, Kuban. Gos. Univ. Publ., 1990, p.11.
3.
Vasil’eva V.I., Bityutskaya L.A., Zaichenko N.A., Grechkina M.V. et al., Sorbtsionnye i khromatograficheskie protsessy, 2008, Vol. 8, No 2, pp. 260-271.
4.
Pis’menskaya N.D., Nikonenko V.V., Melnik N.A., Shevtsova K.A., Membrany i membrannyye tekhnologii, 2011, Vol. 1, No 3, pp. 201-212.
5.
Shaposhnik V.A., Vasil’eva V.I., Reshetnikova E.V., Russ. J. Electrochem., 2000, Vol. 36, No 7, pp. 773-777. DOI: Available at: http://link.springer.com/article/10.1007/BF0275 7679
6.
Shaposhnik V.A., Vasil’eva V.I., Ugryumov R.B., Kozhevnikov M.S., Russ. J. Electrochem., 2006, Vol. 42, No 5, pp. 531-537. DOI: Available at: http://link.springer.com/article/10.1134/S10231 93506050119
7.
Vasil'eva V.I., Shaposhnik V.A., Grigorchuk O.V., Petrunya I.P., Desalination, 2006, Vol. 192, No 1-3, pp. 408-414. DOI: Available at: http://www.sciencedirect.com/science/article/pii /S0011916406002669
8.
Polyanskii N.G., Tulupov P.E., Uspekhi khimii, 1971, Vol. 11, No 12, pp. 2250-2279.
9.
Tulupov P.E., Polyanski N.G., Uspekhi khimi,. 1973, Vol. 42, No. 9, pp 1650-1680.
10.Kurtskhaliya Ts.S., Saldadze K.M., Khimicheskiye aktivnyye polimery, L., 1969, pp. 208-211.
11.Kotova D.L., Selemenev V.F. Termicheskiy analiz ionoobmennykh materialov, M., Nauka, 2002, 156 p.
12.Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.K., Russ. J. Electrochem., 2012, Vol. 48, No 6, pp. 650-659. DOI: Available at: http://link.springer.com/article/10.1134/S10231 93512060158
13.Pis'menskaya N.D., Nikonenko V.V., Mel'nik N.A., Pourcelli G. et al., Russ. J. Electrochem., 2012, Vol. 48, No 6, pp. 610-628. DOI: Available at: http://link.springer.com/article/10.1134/S10231 93512060092
14.Choi J-H., Moon S-H., J. of Colloid and Interface Science, 2003, Vol. 265, pp. 93-100. DOI: Available at: http://www.sciencedirect.com/science/article/pii /S002197970300136X
15.Ghalloussi R., Garcia-Vasquez W., Chaabane L., Dammak L. et al., J. of Membrane Science, 2013, Vol. 436, pp. 68-78. DOI: Available at: http://www.sciencedirect. com/science/article/pii/S0376738813001300
16.Berezina N.P. Elektrokhimiya membrannykh system, Krasnodar, Kuban. gos. un-t, 2009, 137 p.
17.Polyanskii N.G., Shaburov M.A., Zhurnal analiticheskoy khimii, 1963, Vol. 18, pp. 304309.
18.Vasil’eva V.I., Akberova E.M., Zhiltsova A.V., Chernykh E.I. et al., J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, Vol 7., No 5, pp. 833-840. DOI: Available at: http://link.springer.com/article/10.1134/S10274 51013050194
19.Vasil’eva V.I., Pismenskaya N.D., Akberova E.M., Nebavskaya K.A., Russ. J.Phys. Chem.A, 2014, Vol. 88, No 8, pp. 1293-1299. DOI: Available at: http://link.springer.com/article/10.1134/S00360 24414080317.
20.Sirota E.A., Kranina N.A., Vasil'eva V.I., Malykhin M.D. et al., Vestnik VGU, Seriya: Khimiya. Biologiya. Farmatsiya, 2011, No 2, pp. 53-59.
21.Henry J.L., Garton A., American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 1989, Vol. 30, No 1, pp. 183-184.
22.Vasil'eva V.I., Akberova E.M., Shaposhnik V.A., Malykhin M.D., Russ. J. Electrochem., 2014, Vol. 50, No 8, pp. 789-797. DOI: Available at: http://link.springer.com/article/10.1134/S10231 9351408014X
23.Sata T., Tsujimoto M., Yamaguchi T., Matsusaki K., J. of Membrane Science, 1996, Vol. 112, pp. 161-170. DOI: Available at: http://www.sciencedirect.com/science/article/pii /0376738895002928
24.Hwang U.-S., Choi J.-H., Separation and Purification Technology, 2006, Vol. 48, pp. 1623.
DOI: Available at: http://www.sciencedirect.com/science/article/pii /S1383586605002339
Published
2019-11-18
How to Cite
Akberova, E. M., Kolganov, V. I., Korotkov, D. V., & Babichev, S. V. (2019). Physicochemical properties and surface morphology of heterogeneous ion-exchange membranes after temperature modification. Sorbtsionnye I Khromatograficheskie Protsessy, 16(5). Retrieved from https://journals.vsu.ru/sorpchrom/article/view/1393