Peculiarities of the effect of a weak pulsed magnetic aftereffect on the hydration properties of aluminosilicates
Abstract
Natural frame and layered aluminosilicates with high adsorption, ion exchange, molecular sieve, and catalytic characteristics are promising sorbents which can be used to solve a number of important problems. Activation of sorbents by a pulsed magnetic field allows purposefully changing their physical, chemical, and sorption properties. Pulsed magnetic processing is accompanied by both long-term and permanent "memory" after exposure. One of the factors affecting the selectivity of the sorption of components is the hydration abil-ity of the aluminosilicate, which is determined by the pore structure, the chemical nature of the surface, and the inside the frame cations.
The article presents the results of the study of the effect of a weak pulsed magnetic field (WPMF) and relaxation time on the hydration properties of frame (clinoptilolite) and layered (glauconite) aluminosili-cates.
The obtained isotherms of water adsorption by aluminosilicates before and after the exposure to WPMF with a post-action time of 2 and 48 hours were analysed using the BET equation. The more devel-oped porosity and surfaces of clinoptilolite, in contrast to slightly swollen layered minerals, as well as the nature and high concentration of exchange cations, are responsible for the differences in the hydration capaci-ty of aluminosilicates. Changes in the energy state of active centres and structural characteristics under the influence of WPMF are reflected in the difference in the affinity of sorbents to polar water molecules. The magnetic aftereffect from 2 to 48 hours is manifested differently for frame and layered aluminosilicates. It was noted that with the increase in the time of exposure, diffusion-relaxation processes are possible, which tend to return to the original equilibrium state but with the energy redistributed in the active centres.
Downloads
References
Rivera A., Farias T., Micropor. and Mesopor. Materials., 2005, Vol. 80, No 1-3, pp.337-346.
Lam A., Rivera A., Micropor. and Mesopor. Materials, 2006, Vol. 91, No 1-3, pp. 181.
Kotova D.L., Vasilyeva S.Yu., Krysanova T.A. et al., Nanotechnologies in Russia, 2014, Vol. 9, No 9-10, pp. 474-479.
Bel'chinskaya L.I., Khodosova N.A., Strel'nikova O.YU., et al., Fizikokhimiya pov-erkhnosti i zashchita metallov, 2015, Vol. 51, No 5, pp. 1-8.
Ukraintsev V.B., Matsura V.A., Potekhin V.V. et al., Zhurn. org. khimii, 2005, Vol. 75, Vyp. 8, pp. 1329-1332.
Levin M.N., Tatarintsev A.V., Kostsova O.A., Kostsov A.M., Zhurn. tekhn. fiziki., 2003, Vol. 73, Vyp.10, pp. 85-87.
Krivosheyev S.I., Shneyerson G.A., Pla-tonov V.V. et al., Zhurn. tekhn. Fiziki, 2016, Vol. 86, Vyp. 1, pp. 127-131.
Postnikov V.V., Levin M.N., Matveyev N.N. et al., Pis'ma v ZHTF, 2005, Vol. 31, Vyp. 9. pp.14-19.
Bel'chinskaya L.I., Khodosova N.A., Bi-tyutskaya L.A., Fizikokhimiya poverkhnosti i zashchita metallov, 2009, Vol. 45, No 2, pp.218-221.
Bel'chinskaya L.I., Khodosova N.A., Novikova L.A. et al., Fizikokhimiya poverkh-nosti i zashchita metallov, 2017, Vol.53, No 5, pp. 472-479.
Kotova D.L., Artamonova M.N., Krysano-va T.A. et al., Sorbtsionnye i khromatografich-eskie protsessy, 2016, Vol.16, No 3, pp. 390-395.
Urusovskaya A.A., Al'shits V.I., Smirnov A.Ye., Bekkauer N.N., Kristallografiya, 2003, Vol. 48, No 5, pp. 855-872.
Volchkov I.S., Kanevskiy V.M., Pavlyuk M.D., Pis'ma v ZHETF, 2018, Vol. 107, Vyp. 3-4, pp. 276-279.
Korkuna O., Vrublevs/ka T., Leboda R. et al., Microporous and Mesoporous Mater., 2006, Vol. 87, No 3, pp. 243-254.
Alver В.Е., Sakizci М., Yorukogullari Е., J. Therm. Anal. Calorim., 2010, Vol. 100, Iss.1, pp. 19-26.
Arcoya A., Gonzalez J. A., Llabre G. еt al., Microporous Mater., 1996, Vol. 7, pp. 1-13.
Zhabin A.V., Savko A.D. Glaukonity Vo-ronezhskoy anteklizy. Ocherki po regional'noy tekhnologii. Saratov, Nauka, 2008, pp. 48-56.
Novikova L.A, Belchinskaya L.I, Krupskaya V.V. et al., Sorbtsionnye i khroma-tograficheskie protsessy, 2015, Vol. 15, No 5, pp.730-740.
Anisimov M.V. Razrabotka metodov vozdeystviya elektromagnitnykh poley na na-polniteli kleyevykh kompozitsiy dlya pov-ysheniya ekologichnosti i prochnosti fanery: dis ... kand. tekhn. nauk 05.21.05. Voronezh: Voronezhskaya gosudarstvennaya lesotekhnicheskaya akademiya, 2014, 298 p.
Kirgintsev A.N., Ocherki o termodinamike vodno-solevykh system, Novosibirsk, Nauka, 1976, 200 p.
Joshi M.S., Joshi V.V., Choudhary A.L., Kasture M.W., Materials Chemistry and Phys-ics, 1997, Vol. 48, pp. 160-163.
Littl L., IK spektry adsorbtsionnykh mole-kul, M., Mir, 1969, 514 p.
Mozgawa W., Sitarz M., Rokita M., J. Mol. Struct., 1999, Vol. 512, pp. 251-257.
Brek D. Tseolitovyye molekulyarnyye sita, M., Mir, 1976, 760 p.
Greg S. Adsorbtsiya, udel'naya poverkhnost', poristost', M., Mir, 1984, 396 p.
Amanollah E., Absorption, 2009, Vol. 15, No 1, pp. 65-73.
Tarasevich YU.I., Ovcharenko F.D. Ad-sorbtsiya na glinistykh mineralakh, Kiyev, Nau-kova dumka, 1875, 352 p.
Roberge D.M., Hausmann H., Hölderich W.F., Phys. Chem. Chem. Phys., 2002, Vol. 4 (13), pp. 3128-3135.
Stelzer J., Paulus M., Hunger M., Weit-kamp J., Microporous and Мesoporous materi-als, 1998, Vol. 22, pp. 1-8.