Sorbents for HPLC. Current state and new directions of development (Overview)

  • Yakov I. Yashin Scietegra Group of Companies, Moscow, Russian Federation
  • Alexander Ya. Yashin Scietegra Group of Companies, Moscow, Russian Federation
Keywords: sorbents, high performance liquid chromatography (HPLC), reverse phase (RP) mode, silica gels, separation, monolithic columns, molecularly imprinted polymers, chiral sorbents, sorbent structure.

Abstract

A column with a sorbent is the main unit of a liquid chromatograph, since it performs the most important operation - the separation of a mixture’s components. Analysis cannot be performed without the separation of a complex mixture. Therefore, attention is constantly paid to the development of new sorbents. The sorbent provides a constant drive to the improvement of column efficiency, selectivity, and separation speed. Since the advent of high performance liquid chromatography (HPLC), the greatest interest has been shown to sorbents for reversed phase chromatography (RPC) - silica gels with embedded alkyl groups. The methods of their improvement are endcapping, increasing the range of operation with aqueous eluents by embedding of polar groups into the alkyl chain, and using sorbents with stability over the entire pH range (1-14). For 50 years (1970-2020) RPC has been the leader in practical applications (from 60 to 80%) in various years. The retention capacity and selectivity of sorbents with embedded alkyl chains depends on the number of alkyl chains or on the total carbon content per unit weight of the sorbent, which ranges from 8 to 20%. Silica gels with an average pore size of 80, 100, 120 Å are used to separate low molecular weight compounds, and silica gels with pores of 300 Å are used to separate high molecular weight compounds. The review presents new technologies for the production of sorbents: perfusion, monolithic columns, sorbents with pores of the same size, and macroporous carbon adsorbents. A list of unusual sorbents for HPLC is given: hypercross-linked polymers, carbon nanotubes, polycapillary columns, liquid crystals, graphene and graphene oxide, ionic liquids, etc. Lists of sorbents for chiral and hydrophilic chromatography are presented.

Sorbents for chiral chromatography are based on polysaccharides, crown ethers, cyclodextrins, antibiotics, nanotubes, nanoparticles, ionic liquids, etc. In hydrophilic chromatography, strongly polar sorbents are used: hydroxylated silica gel, modified silica gels with aminopropyl, cyanopropyl, diol, amide, and zwitterionic groups. Ionic liquids are used as sorbents in hydrophilic chromatography. The process of improving sorbents for HPLC continues and new achievements in this direction await us.

Downloads

Download data is not yet available.

Author Biographies

Yakov I. Yashin , Scietegra Group of Companies, Moscow, Russian Federation

Dr.Sci. (chemistry) professor

Alexander Ya. Yashin , Scietegra Group of Companies, Moscow, Russian Federation

 Dr.Sci. (chemistry), Senior Researcher

References

Tsvet M.S. Khromofilly v rastitel'nom i zhivotnom mire. Varshava. Izd-vo Var-shavskogo universiteta,1910, 380 p.

Gritti F., Guiochon G., J. Chromat. A, 2012, Vol. 1228, pp. 2-19.

Qia H., Liang Y., Sun M., Jung S., Anal. Bioanal. Chem,. 2011, Vol. 399, pp. 3307-3322.

Unger K.K., Lamotte S., Machtejevas S., Liquid Chromatography, 2017, pp 39-89.

Grinias J.P., Godinho J.M., Gritti F. et al., LC GC North. Am., 2020, No 6, pp. 75-81.

Ghamat S.N., Tolebpour Z., Mehdi A., Trends Anal. Chem., 2019, Vol. 118, pp. 556-573.

Zuvela R., Skoczylas M., Lin J.J., Baczek T. et al., Chem.Rev., 2019, Vol. 119, pp 3674-3729.

Unger K.K., Liapis A.I., J. Sep. Sci., 2012, Vol. 95, pp 1201-1210.

Hannai T., Separations, 2020, Vol. 6, pp. 2-19.

Walter T.H., Andrews R.W., Trends Anal Chem., 2014, Vol. 63, pp 14-20.

De Vos J., Broeckhoven K., Eeltink S., Anal. Chem., 2016, Vol. 88, pp. 262-278.

Yashin Ya.I., Vedenin A.N., Yashin A.Ya., Analitika, 2015, No 2, pp. 432-1434.

Kirkland J.J., Langlois T., DeStefano J., Am. Lab., 2007, Vol. 39, pp. 18-21.

Fekete S., Fekete J., Ganzler K., J. pharm. Biomed. Anal., 2009, Vol. 49, pp. 64-71.

Guiochon G., Gritti F., J Chrom. A, 2011, Vol. 1218, pp. 1915-1938.

McCalley D.V., J. Chrom A, 2011, Vol. 1218, pp. 2887-2897.

McCalley D.V., J. Chrom. A, 2008, Vol. 1193, pp. 85-101.

Horvath C.G., Preiss B.A., Lipsky S.R., Anal. Chem., 1967, Vol. 39, pp. 1422-1428.

Zhdanov S.P., Kiselev A.V., YAshin YA.I., Zh.fiz. khimii, 1963, Vol. 37, pp. 1432-1434.

Yaschin Ya.I., Zhdanov S.P., Kiselev A.V., Gas Chromatografie, 1963, Leuna, pp. 402-415.

Poole C.F., Atapaltu C.N., J.Chrom. A, 2020, Vol. 1633, pp. 461652

Howard G.A., Martin A.J.P., Bio-chem. J., 1950, Vol. 46, pp. 532-538.

Brandt A., Mann G., Arlt W., J. Chrom. A, 1998, Vol. 796, pp. 223-228.

Halasz I., Sebastian I., Angew. Chem. Inter., 1969, Vol. 8, pp 453-454.

Kirkland J.J., DeStefano J.J., J.Chromat. Sci., 1970, Vol. 8, pp. 309-315.

Purospher Star RP 18 Sigma-Aldrich

Meyer E., Engelhardt H., Fresenius Z. Anal Chem., 1989, Vol. 333, pp. 734-737.

Bocian S., Buszewski B., J.Sep.Sci., 2012, Vol. 35, pp. 1191-1200.

Kiridena W., Poole C.F., Koziol W.W., Chromatographia, 2003, Vol. 57, pp. 703-707.

Kirkland J.J., Adams J.B., van Straten M.A., Claessens H.A., Anal Chem., 1998, Vol. 70, pp. 4344-4348.

Yashin Ya.I., Yashin A.Ya., Ros. Khim. Zhurn., 2003, Vol. 47, pp. 64-79.

Yashin Ya.I., Yashin A.Ya., Uspekhi khimii, 2006, Vol. 35, pp. 366-379.

Rommer C.A., Sander L.C., Anal.Bioanal. Chem., 2009, Vol. 394, pp. 285-291.

O Sullivan G.P., Scully N.M., Glennan J.D., Anal. Lett., 2010, Vol. 43, pp. 1609-1629.

Wilson N.S., Gilroy J., Dolan J.W., Snyder L.R., J. Chrom. A, 2004, Vol. 1026, pp. 91-100.

Lopez D.A., Green A.I., Bell D.S., LC GC Europe, 2020, Vol. 33, pp. 460-465.

Neue U.D. HPLC column. Theory, technology and practice, NY Wiley-VCH, 1997, 395 p.

Zhang W., J.Fluorine Chem., 2008, Vol. 129, pp. 910-919.

Przybyciel M., LC GC Europe, 2006, Vol. 19, pp. 19-27.

Jiang Z.T., Zuo Y.M., Se Pu, 2001, Vol. 19, pp. 297-300.

Dunlop C., McNeff, Stoll D., Carr P., Anal.Chem., 2001, Vol. 73, pp. 598A-607A.

Leport C., Gunatillaka A.D., Poole C.F., Analyst, 2001, Vol. 126, pp. 1-9.

Gawdzik B., Osypiuk J., J. Chrom. A, 2000, Vol. 898, pp. 13-21.

Majors R.E., Przybycill M., LC GC North America, 2002, Vol. 20, pp. 584-588.

Nagal N., Enami T., Doshi S., LC GC North America, 2002, Vol. 2, pp. 964-972.

Dembek M., Bocian S., Trends Anal. Chem., 2020, Vol. 123, pp. 1-12.

Kabulov B.D., Zalyalieva S., Ruzi-muradov O.N. et al., Rus. J. Phys. Chem., 2002, Vol. 76, pp. 1512-1514.

Brykina G.D., Zharikova V.S., Matusova S.M., Shpigun O.A., J. Anal Chem., 2005, Vol. 60, pp. 1041-1045.

Davankov V.A., Bochkov A.S., Kur-ganov A.A., Roumeliotis P. et al., Chroma-tographia, 1980, Vol. 13, pp. 677-685.

Bereznitski Y., Jaroniec M., Gangoda M.E., J. Chrom.A, 1998, Vol. 828, pp. 59-73.

Sander L.C., Wise S.A., Anal. Chem., 1984, Vol. 56, pp. 504-510.

Kaliszan R., Chem. Rev., 2007, Vol. 107, pp. 3212-3246.

Ranatunga R.R.J., Carr P.W., Anal Chem., 2000, Vol. 72, pp. 5679-5692.

Guillarme D., Heinisch S., Rocca J.L., J. Chrom. A, 2004, Vol. 1052, pp. 39-51.

Teutenberg T., Hollebekkers K., Wiese S., Boergers A., J. Sep.Sci., 2009, Vol. 32, pp. 1262-1274.

Vailaya A., Horvath C., J.Chrom. A, 1998, Vol. 829, pp. 1-27.

Afeyn N.B., Fulton S.P., Gordon N.F. et al., J. Chrom. A, 1990, Vol. 519, pp. 233-266.

Liapis A.T., McCoy M.A., J. Chrom A, 1992, Vol. 599, pp. 87-95.

Lloyd L.L., Warner F.P., J. Chrom A, 1990, Vol. 512, pp. 365-376.

Hjerten S., Liao J.L., Zhang R., J. Chrom A, 1989, Vol. 473, pp. 273-275.

Hjerteu S ., Liao J.L., Zhang R., J. Chromat, 1989, Vol. 473, pp. 273-278.

Unger K.K., Skudas R., Shulte M.M., J. Chrom. A, 2002, Vol. 1184, pp. 793-815.

Guiochon G., J. Chrom A, 2007, Vol. 1168, pp. 101-168.

Tanaka N., Kobayashi H., Nakanishi K. et al., Anal.Chem., 2001, Vol. 73, pp. 420-430.

Jandera P., Hajek T., Sromova Z., J. Sep.Sci., 2019, Vol. 42, pp. 670-677.

Hormann K., Mullner T., Bruns S. et al., J. Chrom A, 2012, Vol. 1212, pp. 48-58.

Miyamoto K., Hara K., Kobayashi H. et al., Anal. Chem., 2008, Vol. 80, pp. 8741-8750.

Jandera P., J. Chrom. A, 2013, Vol. 1313, pp 37-53.

Sotnikova Yu.S., Patrushev Yu.V., Vestnik Tomsk. Gos. Un-ta, khimiya, 2019, Vol. 14, pp. 40-52.

Patruchev Y.V., Yudina Y., Sidelnikov V., J. Liq.Chrom, 2018, Vol. 41, pp. 458-466.

Rieux L., Sneekes E.J., Swart R., LCGC North America, 2011, Vol. 29, Is. 10, рp. 926-934.

Josic D et al., J. Chrom. A, 2001, Vol. 752, pp 101-105.

Tanaka N., Kimura H., Takuda D. et al., Anal. Chem., 2004, Vol. 46, pp. 1278-1281.

Wulff G., Sarhan A., Angew. Chem. Int. Ed. Engl., 1972, Vol. 11, pp. 341-345.

Wulff G., Sarhan A., Zabrocki K., Tetrahedron Letters, 1973, Vol. 14, Issue 44, pp. 4329-4332.

BelBruno J.J., Chem. Rev., 2019, vol. 119, pp. 94-119.

Chen L., Wang X., Lu W., Wu X. et al., Chem. Soc. Rev., 2016, Vol. 45, pp. 2137-2211.

Wei Z.-H., Mu L.N., Huang Y.P., Lin Z.S., Trends Anal. Chem., 2017, Vol. 86, pp. 84-92.

Handbook of molecularly imprinted polymers. Eds. C.Alvarez-Lorenzo, A.Concheira. Smithers Rapra Technology Ltd. Shropshire UK 2013. 400 p.

Molecular imprinting Ed. K.Haupt. Springer. Berlin Germany 2012, 265 p.

Lai J.P., Niessner R., Knopp D., Anal. Chim. Acta, 2004, Vol. 522, pp. 137-144.

Ndunda E.N., Mizaikoff B., Analyst, 2016, Vol. 141, pp. 3141-3156.

Bjarnason B., Chimuka L., Ramstrom O., Anal.Chem., 1999, Vol. 71, pp. 2152-2156.

Xiaoman Zheng, Tongguang Xu, Rui Shi, Nan Lu, et al., Materials Letters, 2018, Vol. 211, pp. 21-23.

Song L, He J, Chen N, Huang Z., J Sep Sci., 2019, Vol. 42, No 24, pp. 3679-3687.

Molinelli A., Weiss R., Mizaikoff B., J. Agric. Food Chem., 2002, Vol. 50, pp. 1804-1808.

Zhao Q.Y., Zhao H.T., Yang X. et al., J.Chrom.A, 2018, Vol. 1572, pp. 9-19.

Wang D., Hong S.P., Row K.H., Kor. J. Chem. Eng., 2004, Vol. 21, pp. 853-857.

Ma N., Row K.N., Molecules, 2020, Vol. 25, pp. 280-295.

Kempe M., Mosbach K., J. Chroma-togr. A, 1995, Vol. 691, pp. 317-323.

Gast M., Sobek H., Mizaikoff B., TrAC Trends in Analytical Chemistry, 2019, Vol. 114, pp. 218-232.

Piletsky S., Canfarotta F., Poma A. et al., Trends in biotechnology, 2020, Vol. 38, pp 368-387.

Sellergren B., Wieschemeyer J., Boos K., Seidel D., Chem. Mater., 1998, Vol. 10, pp. 4037-4046.

Sellergren B., J. Chromatogr. A, 2001, Vol. 906, pp. 227-252.

Alvarez-Lorenzo C., Concheiro A., J. Chromatogr. B, 2004, Vol. 804, pp. 231-245.

Knox P., Ross P., Adv. Chromat., 1998, Vol. 37, pp. 73-95.

Forgacs E., Cserhati T., Trends Anal. Chem., 1995, Vol. 14, pp 23-29.

Pereira L., J. Liq. Chrom Rel.Techn., 2008, Vol. 31, pp. 1687-1731.

Czerhati T., Biomed Chromat., 2009, Vol. 23, pp. 111-118.

Yashkin S.N., Solovova N.V., ZH.fiz. khimii, 2004, Vol. 78, pp. 344-347.

Еnerly M.R., LC GC Europe, 2000, Vol. 103, pp. 685-694.

Kartsova L.A., Makarov A.A., ZHurn. priklad. Khimii, 2002, Vol. 75, No 11, pp.1761-1767.

Shcherbakova K.D., YAshin YA.I., V knige «100 let khro-matografii» Otv. Red. B.A.Rudenko, M., Nauka, 2003, pp. 670-697.

Davankov V., Tsyurupa M., Ilyin M., Pavlova L., J. Chromat. A, 2002, Vol. 965, pp. 65-73.

Chang Y.X., Zhou L.L., Li G.X. et al., J. Liq. Cromat., 2007, Vol. 30, pp. 2953-2956.

Yang L., Guo Xiao T., Yang J. et al., J. Chrom. Sep. Techn., 2018, Vol. 8, pp. 399-405.

Czajek H., Jonic J., Wawer T., Purchola M., Crit. Rev. Anal.Chem., 2020, Vol. 50, pp. 445-471.

Shi X., Qiao L., Xu G., J. Chrom. A, 2015, Vol. 1420, pp. 1-15.

Zhdanov A.A., aftoreferat, Novosi-birskij Gosudarstvennyj universitet, 2011, 24 p.

Sidel'nikov V.N., Analitika, 2014, No 6, pp. 40-55.

Aratskova A.A., Vetrova Z.P., Yash-in Ya.I., J. Chrom. A, 1986, Vol. 365, pp. 27-30.

Sargazi M., Linford M.R., Kaynhaii M., Crit. Rev. Anal. Chem., 2019, Vol. 19, pp. 243-255.

Randon J., Gullrin J.F., Rocca J.L., J . Chrom A, 2008, Vol. 1214, pp. 183-186.

Davankov V.A., Bochkov A.S., Kur-ganov A.A. et al., Chromatographia, 1980, Vol. 13, pp. 677-685.

Ikai T, Okamoto Y., Chemical Re-views, 2009, Vol. 109, No 11, pp. 6077-6101.

Adhikari S., Lee W., J. Pharm. Inves-tig., 2018, Vol. 48, pp. 225-231.

Mitchell C.R., Armstrong D.W., Cy-clodextrin-Based Chiral Stationary Phases for Liquid Chromatography. In Chiral Sepa-rations: Methods and Protocols; Gübitz, G., Schmid, M.G., Eds.; Humana Press: New York, NY, USA, 2004, pp. 61-112.

Ward T.J., Farris A.B., J Chromatogr A, 2001, Vol. 906, No 1-2, pp. 73-89.

Ahmed M., Yajadda M.M.A., Han Z.J., Su D. et al., J. Chromatogr. A, 2014, Vol. 1360, pp. 100-109.

Shukla N., Bartel M.A., Gellman A.J., J. Am. Chem. Soc., 2010, Vol. 132, pp. 8575-8580.

Fernandes C., Tiritan M., Pinto M., Symmetry, 2017, Vol. 9, pp. 206-209.

Tu F.Y., Yu L.Y., Yu J.G., Chen X.Q. et al., Nano, 2013, Vol. 8, 1350069.

Jandera P., Janas P., Anal. Chim. Acta, 2017, Vol. 967, pp. 12-32.

Ponten J.M., LC GC North Am, 2012, Vol. 30, pp 26-42.

Olsen B.A., J. Chrom A, 2001, Vol. 913, pp. 113-122.

Jandera P., Anal. Chim. Acta, 2011, Vol. 1692, pp 1-25.

Osipov A.S., Popova O.A., Gretskaya T.H. et al., The Bulletin of the Scientific Cen-tre for Expert Evaluation of Medicinal Prod-ucts, 2018, Vol. 8, No 3, pp. 162-169

McCalley, J. Chrom. A, 2008, Vol, 1193, pp. 85-91.

Kinata K., Iwaguchi K., Ohishi S., Jinno K., Eksteen R. et al., J. Chrom. Sci., 1989, Vol. 27, pp 721-728.

Published
2021-04-09
How to Cite
Yashin , Y. I., & Yashin , A. Y. (2021). Sorbents for HPLC. Current state and new directions of development (Overview). Sorbtsionnye I Khromatograficheskie Protsessy, 21(2), 235-245. https://doi.org/10.17308/sorpchrom.2021.21/3357