The Monte-Carlo molecular modeling of non-rigid organic molecules for prediction their retention properties

  • А. К. Буряк Buryak Alexey K. – prof., grand PhD (chemistry), laboratory of physical-chemical basics of chromatography and chromato-mass-spectrometry Institute of Physical chemistry and electrochemistry, Moscow
  • Д. Д. Матюшин Matyushin Dmitriy D. - Senior Assistant, A.N.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow. E-mail: dm.matiushin@mail.ru
Keywords: Monte-Carlo molecular modeling, graphitized thermal carbon black, gas chromatography.

Abstract

The Monte-Carlo molecular modeling of adsorption of organic molecules on Graphitized Thermal
Carbon Black (GTCB) is provided in this work. Only that conditions are considered, where Henry’s law is
applicable. Modified GAFF (General Amber Force Field) force field and simplified model of molecule with
rigid bond lengths and angles are used. Crowell’s approach for efficient calculation of potential energy of
interactions between organic molecule and graphitic layer is applied. Good agreement with experiment is
demonstrated for many organic molecules: alkanes (CH4-C12H26), chloroalkanes, alkylbenzenes, ethers. Satisfactory
correlation between experimental and calculated data is achieved. New approach is compared with
molecular statistical method, which is used to calculate characteristics of adsorption on GTCB. Advantage of
this approach is shown. Influence of adsorption on graphitic surface at conformation of molecule is discussed.
Possible effect of systematic error in experimental data is shown. All calculations are perfomed with
self-written software.

Downloads

Download data is not yet available.

References

1. Buryak A.K., Russ Chem Rev., 2002,Vol. 71(8), pp. 695-706.
2. Avgul' N.N., Kiselev A.V., Poshkus D.P. Adsorbtsiya gazov i parov na odnorodnykh poverkhnostyakh (Adsorption of gases and vapors on homogeneous surfaces), M., Khimiya, 1975, pp. 384.
3. Kiselev A.V., Nazarova V.I., Shcherbakova K.D., Journal of Chromatography A, 1984, Vol. 292., No 1, pp. 97-103.
4. Kiselev A.V., Kulikov N.S., Curthoys G., Chromatographia, 1984, Vol. 18, No 6, pp. 297-304.
5. Engewald W., Pörschmann J., Welsch T., Chromatographia. 1990, Vol. 30, No 9, pp. 537-542.
6. Engewald W., Wennrich L., Pörschmann J., Chromatographia, 1978, Vol. 11, No 8, pp. 434-439.
7. Buryak A.K., Gar'kin V.P., Red'kin N.A., Serdyuk T.M. et al., Molekulyarnostatisticheskie raschety termodinamicheskikh kharakteristik adsorbtsii izomerov: uchebnoe posobie (Molecular-statistical calculations of thermodynamic characteristics of adsorption of isomers: study book), Samara, Univers grupp, 2008, pp. 142.
8. Milyushkin A.L., Buryak A.K., Sorbtsionnye i khromatograficheskie protsessy, 2015, Vol. 15, No 3, pp. 379-389.
9. Kuznetsova E.S., Buryak A.K., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2011, Vol. 383, No 1-3, pp. 73-79.
10. Crowell A.D., Steele R.B., J. Chem. Phys., 1961, Vol. 34, pp. 1347-1349.
11. Wang J., Wolf R M., Caldwell J.W., Kollman P.A., et al., Journal of Computational Chemistry, 2004, Vol. 25, pp. 1157-1174.
12. Leroy F., Liu S., Zhang J., The Journal of Physical Chemistry C, 2015, Vol. 119, No 51, pp. 28470-28481.
13. Werder T., Walther J.H., Jaffe R.L., Halicioglu T. et al., J. Phys. Chem. B, 2003, Vol. 107, No 6, pp. 1345-1352.
14. Wu. Y.B., Aluru N.R., J. Phys. Chem. B, 2013, Vol. 117, No 29, pp. 8802-8813.
15. Kalashnikova E.V., Kiselev A.V., Petrova R.S., Shcherbakova K.D. et al., Chromatographia, 1979, Vol. 12, No 12, pp. 799-802.
Published
2018-02-21
How to Cite
Буряк, А. К., & Матюшин, Д. Д. (2018). The Monte-Carlo molecular modeling of non-rigid organic molecules for prediction their retention properties. Sorbtsionnye I Khromatograficheskie Protsessy, 17(2), 204-211. https://doi.org/10.17308/sorpchrom.2017.17/372