Determination of the grape anthocyanins under reversed-phase HPLC conditions

  • Viktor I. Deineka Belgorod National Research University, Belgorod
  • Sergey L. Makarevich FSBI "Belgorod Interregional Veterinary Laborato-ry", Belgorod
  • Irina P. Blinova Belgorod state national research University, Belgo-rod
  • Elena Yu. Oleinits Belgorod National Research University, Belgorod
  • Lyudmila A. Deineka Belgorod state national research University, Belgorod
Keywords: reversed-phase HPLC, anthocyanin separation, temperature effect, grape anthocyanins, 3-glucosides, 3,5-diglucosides, wines.

Abstract

We developed a simple gradient separation option for all 3-glucosides and 3,5-diglucosides of the five main anthocyanidins (delphinidin, cyanidin, petunidin, peonidin, and malvidin) characterising anthocyanin biosynthesis in fruit of different grape varieties of Vitis vinifera species (first group) as well as in other grape varieties (North American or Far Eastern origin), and in their hybrids. For separation, we used HPLC with a Symmetry C18 stationary phase and the eluents of 10 vol.% formic acid and two different compositions of 6 vol.% and 20/30 vol.% acetonitrile in water. Interspecific hybrids are distinguished by the appearance of 3,5-diglucosides in their extracts in addition to 3-glucosides. Both 3-glucosides and 3,5-diglucosides can be separated easily under conditions of reversed-phase chromatography. The problem of separation arises only when they both appear in a sample, especially the pair of petunidin-3-glucoside and malvidin-3,5-diglucoside. In order to separate the above anthocyanins, we determined the enthalpies of the transfer of these anthocyanins from the mobile phase to the stationary phase. It was found experimentally that all sorption processes were exothermic. The transfer enthalpy was different for 3-glucosides and 3,5-diglucosides. It decreased in magnitude, when the glucoside radical was added to position 5. The difference in this parameter for petunidin-3-glucoside and malvidin-3,5-diglucoside makes it possible to change the selectivity of the analyte separation by increasing the separation temperature from 40 to 55оC. This allows testing grape varieties and wines for the markers of crossbreeding with non-Vitis vinifera species. In this study, we used a number of wines bought in a supermarket, made from Vitis vinifera Cabernet or Cabernet Sauvignon grapes. It was determined that there were no 3,5-diglucosides in the studied wines produced in Chile and France. This indicates the use of only Vitis vinifera grapes in their production. However, we found significant amounts of 3,5-diglucoside in all the wines produced in Russia, indicating the use of hybrid grape varieties (such as the Moldova variety, which is popular in Russia).

Downloads

Download data is not yet available.

Author Biographies

Viktor I. Deineka , Belgorod National Research University, Belgorod

 Professor of the Department of General Chemistry Belgorod National Research University, Belgorod, e-mail deineka@bsu.edu.ru

Sergey L. Makarevich , FSBI "Belgorod Interregional Veterinary Laborato-ry", Belgorod

 Chemical engineer category II, FSBI "Belgorod Interregional Veterinary Laboratory", Belgorod

Irina P. Blinova, Belgorod state national research University, Belgo-rod

Associate Professor of the Department of General Chemistry Belgorod state national research University, Belgorod, e-mail blinova@bsu.edu.ru

Elena Yu. Oleinits , Belgorod National Research University, Belgorod

Post Graduate of Belgorod National Research University, Belgorod, e-mail oleinits_e@bsu.edu.ru

Lyudmila A. Deineka , Belgorod state national research University, Belgorod

Associate Professor of the Department of General Chemistry Belgorod state national research University, Belgorod, e-mail deyneka@bsu.edu.ru

References

Clifford M.N., Knight S., Kuhnert N., J. Agric. Food Chem., 2005, Vol. 53, pp. 3821-3832. https://doi.org/10.1021/jf050046h

Deineka V.I., Grigor'ev A.M., J. Anal. Chem., 2004, Vol. 59, pp. 270-274. https://link.springer.com/article/10.1023/B:JANC.0000018972.54587.ce

da Silva Padilha C.V., Miskinis G.A., Olinda de Souza M.E.A. et al., Food Chem., 2017, Vol. 228, pp. 106-115. https://doi.org/10.1016/j.foodchem.2017.01.137.

Clifford M.N., J. Sci. Food Agric., 2000, Vol. 80, pp. 1033-1042. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T

IUPAC Commission on the Nomencla-ture of Organic Chemistry (CNOC) and IUPAC-IUB Commission on Biochemical No-menclature (CBN). Nomenclature of cy-clitols. Recommendations, 1973, Biochem. J., 1976, Vol. 153, pp. 23-31. https://doi.org/10.1042/bj1530023

Clifford M.N., Johnston K.L., Knight S. et al., J. Agric. Food Chem., 2003, Vol. 51, pp. 2900-2911. https://doi.org/10.1021/jf026187q.

de Paula Lima J., Farah A., King B. et al., J. Agric. Food Chem., 2016, Vol. 64, pp. 2361-2370. https://doi/10.1021/acs.jafc.6b00276.

Schütz K., Kammerer D., Carle R., Schrieber A., J. Agric. Food Chem., 2004, Vol. 52, pp. 4090-4096. https://doi.org/10.1021/jf049625x

Deineka V.I., Oleinits E.Yu., Blinova I.P. et al., J. Anal. Chem., 2019, Vol. 74, No 8, pp. 778-783. https://link.springer.com/article/10.1134/S1061934819080057

Cole L.A., Dorsey J.G., Anal. Chem., 1992, Vol. 4, pp. 1317-1323. https://doi.org/10.1021/ac00037a004.

Schoenmakers P.J., Billiet H.A.H., Tijs-sen R. et al., J. Chromatogr. A, 1978, Vol. 149, pp. 519-537. https://doi.org/10.1016/S0021-9673(00)81008-0.

Murugesu K., Saghir S.A.M., Sadikun A. et al., Acta Chromatographica, 2021, Vol. 33, pp. 170-178. https://doi.org/10.1556/1326.2020.00690.

Bicchi C.P., Binello A.E., Pellegrho G.M. et al., J. Agric. Food Chem., 1995, Vol. 43, pp. 1549-1555. https://doi.org/10.1021/jf00054a025.

Ky C.-L., Noirot M., Hamon S., J. Agric. Food Chem., 1997, Vol. 45, pp. 786-790. https://doi.org/10.1021/jf9605254.

Xue M., Shi H., Zhang J., Liu Q.-Q. et al., Molecules, 2016, Vol. 21, pp. 948. https://doi:10.3390/molecules21070948.

Ageeva N.M., Markosov V.A., Iltna I.A., Dergunov A.V., Khimiya rastitelnogo syrya, 2021, Vol. 2, pp. 201-208. https://doi.org10.14258jcprm.2021027427.

Published
2021-12-11
How to Cite
Deineka , V. I., Makarevich , S. L., Blinova, I. P., Oleinits , E. Y., & Deineka , L. A. (2021). Determination of the grape anthocyanins under reversed-phase HPLC conditions. Sorbtsionnye I Khromatograficheskie Protsessy, 21(5), 653-660. https://doi.org/10.17308/sorpchrom.2021.21/3771