Sorption and thermodynamic characteristics of aluminium electrodes modified with europium over a wide temperature range

  • Victoria O. Lukyanova Yuri Gagarin State Technical University of Saratov, Saratov
  • Irina Yu. Gots Yuri Gagarin State Technical University of Saratov, Saratov
Keywords: electromotive force, REE, aluminium matrix, hydrogen, potentiostatic method, microstructure, diffusion-kinetic characteristics

Abstract

This paper studies the effect of temperature on the hydrogen sorption by an aluminium alloy doped with europium. The aluminium electrodes were modified using cathodic incorporation. At first, europium was incorporated from a 0.5 mol dimethylformamide (DMF) solution of europium salicylate with a cathodic polarisation potential of -2.9 V (relative to non-aqueous silver chloride electrode) at 25°C. Then hydrogen from an aqueous-organic electrolyte (dimethylformamide and water, in a ratio of 7:3) was introduced to the prepared aluminium-europium electrode at the following temperatures: 253.15; 263.15; 273.15; 283.15; 293.15; 303.15; 313.15; and 323.15 K. During the experiment, we used potentiostatic curves to calculate the diffusion-kinetic characteristics of hydrogen sorption during electrolysis, such as the incorporation constant, the concentration of atoms incorporated in the matrix, the diffusion coefficient, and the adsorption value. We also determined the effect of the cathodic incorporation temperature on the nucleation process and thermodynamic characteristics of the obtained electrodes. We used the electromotive force method to determine the thermodynamic properties: Gibbs free energy (∆G), entropy (∆S), enthalpy (∆H), and activation energy. The study showed that an increase in the temperature results in an increase in ∆G, ∆S, and ∆H, which means that at higher temperatures the degree of system disorder increases. An analysis of the potentiostatic curves in various coordinates demonstrated that the hydrogen diffusion process is accompanied by the parallel growth of the hydride layer, which occurs due to the chemical interaction between hydrogen and the elements of the Al-Sm alloy.

Downloads

Download data is not yet available.

Author Biographies

Victoria O. Lukyanova , Yuri Gagarin State Technical University of Saratov, Saratov

post-graduate student of the department "Chemistry and Chemical Technology of Materials", Yuri Gagarin State Technical University of Saratov, Saratov, e-mail: lukyanova.viky@yandex.ru

Irina Yu. Gots , Yuri Gagarin State Technical University of Saratov, Saratov

Ph.D., associate professor of the department "Materials Science and Biomedical Engineering", Yuri Gagarin State Technical University of Saratov, Saratov, e-mail: irina.gots@mail.ru

References

Wang J., Li G., Fu K., Li X., Journal of Materials Science, 2019, Vol. 54, No 20, pp 13334-13343. DOI: https://10.1007/s10853-019-03608-3

Hosono H., Kitano M., Chemical Re-views, 2021, Vol. 121, No 5, pp. 3121-3185. DOI: https://10.1021/acs.chemrev.0c01071

Prigent J., Joubert J.M., Latroche M., International Journal of Hydrogen Energy, 2017, Vol. 42, No 35, pp. 22348-22352. DOI: https://10.1016/j.ijhydene.2017.01.002

Hirscher M., Yartys V.A., Baricco M., von Colbe J.B. et al., Journal of Alloys and Compounds, 2020, No 827, pp. 153548. doi: https://10.1016/j.jallcom.2019.153548

Yong H., Guo S., Yuan Z., Qi Y., Zhao D. et al., International Journal of Hydrogen Energy, 2019, Vol. 44, No 31, pp.16765-16776. DOI: https://10.1016/j.ijhydene.2019.04.281

Huot J., Cuevas F., Deledda S., Edalati K. et al., Materials, 2019, Vol. 12, No 17, pp. 2778. DOI: https://10.3390/ma12172778

Percheron-Guegan A., Lartigue C., Achard J.C., Journal of the Less common Metals, 1985, Vol. 109, No 2, pp. 287-309. DOI: https://10.1016/0022-5088(85)90061-X

Luo Q., Li J., Li B., Liu B. et al., Jour-nal of Magnesium and Alloys, 2019, Vol. 7, No 1, pp. 58-71. DOI: https://10.1016/j.jma.2018.12.001

Vargas S.J., Schaeffer N., Souza J.C., da Silva L.H. et al., Waste Manage-ment, 2021, Vol. 125, pp.154-162. DOI: https://10.1016/j.wasman.2021.02.038

Zhang S., Saji S.E., Yin Z., Zhang H. et al., Advanced Materials, 2021, Vol. 33, No 16, pp. 2005988. DOI: https://10.1002/adma.202005988

Hadjixenophontos E., Dematteis E.M., Berti N., Wołczyk A.R. et al., Inorganics, 2020, Vol. 8, No 3, pp.17. DOI: https://10.3390/inorganics8030017

Fu K., Li G., Li J., Liu Y. et al., Jour-nal of Alloys and Compounds, 2017, No 696, pp.60-66. DOI: https://10.1016/j.jallcom.2016.11.182

Gots I.Y., Lukyanova V.O., Perspek-tivnye materialy, 2020, No 2, pp. 39-47 DOI: https://10.30791/1028-978X-2020-2-39-47

Olshanskaja L.N., Danilova E.A., Kircheva A.A., Vіsnik Harkіvs'kogo nacіonal'nogo avtomobіl'no-dorozhn'ogo unіversitetu, 2011, No 52, pp. 91-96.

Gavrilova N.V., Kudrjash V.I., Litejnov Ju.V., Harchenko E.L. et al., Mezhdunarodnyj nauchnyj zhurnal Al'terna-tivnaja jenergetika i jekologija, 2008, No 8, pp. 10-26.

Gots I.Y., Klimov A.S., Madzhulo A.S., Nechaev G.G., Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universi-teta, 2012, Vol. 3, No 1, pp. 67-72.

Olshanskaja L.N., Popova S.S., Za-kirova S.M., Electrokhimia, 2000, Vol. 36, No 8, pp. 951-958.

Olshanskaja L.N., Terina E.M., Nichvolodin A.G., Electrokhimicheskaya energetika, 2001, Vol. 1, No 4, pp. 49-53.

Popova S.S., Celujkina G.V., Kabanov B.N., Electrokhimia, 1985, Vol. 21, No 2, pp.161-167.

Popova S.S., Fazy vnedrenija v jel-ektrohimii i jelektrohimicheskoj tehnologii. Saratov, Izd-vo Sarat. gos. tehn. un-ta, 1993,78 p.

Lukyanova V.O., Gots I.Y., Con-densed Matter and Interphases, 2020, Vol. 22, No 4, pp. 481-488. DOI: https://10.17308/kcmf.2020.22/3118

Published
2021-12-11
How to Cite
Lukyanova , V. O., & Gots , I. Y. (2021). Sorption and thermodynamic characteristics of aluminium electrodes modified with europium over a wide temperature range. Sorbtsionnye I Khromatograficheskie Protsessy, 21(5), 681-688. https://doi.org/10.17308/sorpchrom.2021.21/3774