30th anniversary of hydrophilic interaction chromatography

  • Yakov I. Yashin Scietegra group, Moscow
  • Alexander Ya. Yashin Scietegra group, Moscow
Keywords: hydrophilic interaction chromatography (HILIC), retention mechanism, sorbents, eluents, two-dimensional HILIC, applications

Abstract

Over the past 30 years (1990-2020), hydrophilic interaction chromatography (HILIC) has come a long way and is now one of the most popular chromatograpic methods used in various fields to separate and analyse polar compounds. It originated at the junction of normal phase liquid chromatography (NP-HPLC) and reversed phase chromatography (RP-HPLC) and employs polar sorbents used in NP-HPLC and polar eluents used in (RP-HPLC). HILIC has a complex retention mechanism, since, besides polar compounds, it can also separate ionic compounds. Therefore, HILIC is, in fact, a combination of three methods: NP-HPLC, RP-HPLC, and ion exchange chromatography (IC). Due to several parameters affecting the degree of retention, HILIC presents a flexible method, which can be used to set optimal conditions for the separation of complex polar compounds. The retention is influenced by the following parameters: distribution between the water-rich layer on the surface of the sorbent and the organic component of the eluent, adsorption, and other interactions. There is a wide range of sorbents developed specifically for HILIC: sorbents with neutral functional groups on the surface, sorbents with charged groups, and sorbents with zwitterionic groups. The article presents an overview of sorbents with various functional groups on the surface. A specific feature of HILIC is the use of eluents with high concentrations of organic components, most commonly acetonitrile (60-95%). Methanol, ethanol, isopropanol, and acetone are also used. HILIC proved to be a very promising two-dimensional chromatographic technique (especially when combined with RP-HPLC) for separation and analysis of complex mixtures of polar compounds. In complex analysis, the most common combination is HILIC x RP-HPLC x MS. HILIC variations also proved to be highly effective in medicine, biology, and pharmaceutics, where they are used for the separation and analysis of biologically active compounds, namely amino acids, peptides, proteins, nucleotides, nucleosides, carbohydrates, antibodies, DNA derivatives, drugs, metabolites, disease markers, purine and pyrimidine bases, and polyphenolic compounds (flavonoids, anthocyanins, proanthocyanidins, etc.), especially in food and drinks. Reviews of the analyses of food and drugs have been published in pharmaceutics, metabolomics, proteomics, peptidomics, and other omics.

Downloads

Download data is not yet available.

Author Biographies

Yakov I. Yashin , Scietegra group, Moscow

Dr.Sci. (chemistry) professor, Scientific Consultant of Interlab, Moscow, E-mail: yashin@scietegra.com

Alexander Ya. Yashin , Scietegra group, Moscow

Dr.Sci. (chemistry), Senior Researcher, Institute of Analytical Toxicology LLC, Moscow

References

Alpert A.J., J. Chromat., 1990, Vol. 499, pp. 177-196.

Linden J.C., Lanhead C.L., J. Chromat., 1975, Vol. 105, pp. 125-133.

Palmer J.K., Anal. Lett., 1975, Vol. 8, pp. 215-224.

Caprykin L.V., Kiseleva N.V., Vasil'ev V.N., Zav. Lab., 1990, Vol. 56, pp. 49-54.

Gusarov A.A., Saprykin L.V., Kiseleva N.V., Zav. Lab., 1992, No 11, pp. 7-9.

Appelblad P., Practical quide to HILIC, 1 st edition Publishes by Merck, 2008, 320 р.

Guo Y., Wang P.G., Hydrophilic interac-tion chromatography (HILIC) and advanced applications CRC Press, New York, USA, 2011, 401 p.

Perry G., Wang P., He W., HILIC and advanced applications, 1 st edition Boca Ra-ton, 2011, 350 р.

Vitha M. Hydrophilic interaction chro-matography, New Yersey, John Wiley and Sons, 2013, 313 p.

Olsen B.A., Pack B.W., Hydrophilic interaction chromatography – a Guide for Practitioners Hoboken, N.Y., Wiley, 2013, 336 p.

Eds. Wang P.G., He W., Hydrophilic interaction liquid chromatography (HILIC) and advanced applications, CRC Press, 2017, 610 p.

Zanner G., Deedler A.M., Nuhrer M., Electrophoresis, 2011, Vol. 32, pp. 3456-3466.

Cubbon S., Bradbury T., Wilson J. et al., Anal.Chem., 2007, Vol. 79, pp. 8911-8918.

Buszewski B., Noga S., Anal. Bio-anal. Chem., 2012, Vol. 402, No 1, pp. 231-247.

Hemstrom P., Irgum K., J. Sep. Sci., 2006, Vol. 29, No 12, pp. 1784-1821.

Gama M.R., Silva R.G. da C., Collins C.H., Bottoli C.B.G., Trends Anal. Chem., 2012, Vol. 37, pp. 48-60.

Guo Y., Analyst, 2015, Vol.140, pp. 551-559.

Mc Calley D.V., LC GC Europe, 2019, Vol. 32, pp.114-125.

Chernobrovkina A.V., Smolenkov A.D., SHpigun O.A., Laboratoriya i pro-izvodstvo, 2018, No 4, pp.76-92.

Kartsova L.A., Bessonova V.A., So-mova V.D., ZHurnal analit. khimii, 2019, Vol. 74, pp. 323-334.

Horshitha S., Surya S.R., Baba H.S.U. et al., J. Drug metabolism technolo-gy, 2020, Vol. 11, pp. 252-263.

Torayo M., Haddad P.R., Amos. I.J. et al., Anal. Chim. Acta, 2018, Vol. 1000, pp. 20-40.

McCalley D.V., LC GC North Amer., 2020, Vol. 38, pp. 1-12.

Pirok B.W.J., Molenar S.R.A., van Outerstarp R.E., Shoenmakers R.J., J. Chrom. A, 2017, Vol. 1530, pp. 104-111.

Jovanovic M., Rakic T., Jancic-Stojanovic B., Instrumentation Science Technology, 2014, Vol. 42, pp. 230-266.

Enerby M.R., Hulse J., Peterson P. et al., Anal Bioanal Chem., 2015, Vol. 407, pp. 9135-9152.

Jin G., Guo Z., Zhang F. et al., Talan-ta, 2008, Vol. 76, pp. 522-527.

Guo Y., Bhalodia N., Fattal B., Serris I., Separations, 2019, Vol. 6, pp. 19-25.

Guo Y., Gaiki S., J. Chromat A, 2011, Vol. 1218, pp. 5920-5938.

Toraji M., Haddad P.R., Amos R.J. et al., J. Chromat A, 2016, Vol. 1486, pp. 59-67.

McCalley D.V., J. Chrom. A, 2018, Vol. 1523, pp. 49-71.

Jandera P., Janás P., Anal. Chim. Ac-ta, 2017, Vol. 967, pp. 12-32.

McCalley D.V., J. Chrom. A, 2018, Vol. 1554, pp. 61-70.

Alvares-Segura T., Anal. Chim. Acta, 2019, Vol. 1050, pp. 176-181.

Alpert A.J., J. Chrom A, 2018, Vol. 1538, pp. 45-48.

Ikegami T., Tomomatsu K., Takubo H., Horie K. et al., J. Chromatogr. A, 2008, Vol. 1184, pp. 474-481.

Greco G., Letzel T., J. Chromatogr. Sci., 2013, Vol. 51, pp. 684-693.

Jandera P., Stankova M., Chroma-tographia, 2015, Vol. 79, No 13-14, pp. 853-859.

McCalley D.V., J. Chromatogr. A, 2010, Vol. 1217, No 20, pp. 3408-3412.

Fountain K.J., Xu J., Diehl D.M., Morrison D., J. Sep. Sci., 2010, Vol. 33, No 6-7, pp. 740-746.

Karatapanis A.E., Fiamegos Y.C., Stalikas C.D., J. Chromatogr. A, 2011, Vol. 1218, No 20, pp. 2871-2877.

Dinch N.P., Jonson T., Irgum K., J. Chrom A, 2011, Vol. 1218, pp. 5880-5891.

Kumar A., Heaton J.C., McCalley D.V., J. Chromatogr. A, 2013, Vol. 1276, pp. 33-43.

Alpert A.J., Anal. Chem., 2008, Vol. 80, No 1, pp. 62-68.

Hanai T., Cur. Chrom., 2018, Vol. 5, pp. 43-52.

Berthort A., Ruiz-Angel M.J., Carda-Broach C., J. Chrom A, 2008, Vol. 1184, pp. 6-10.

Jandera P., J. Sep. Sci., 2008, Vol. 31, No 9, pp. 1421-1430.

Oiao L., Shi X., Xu G., Trends Anal. Chem., 2016, Vol. 81, pp. 23-29.

Hou Y., Zhang F., Lin X. et al., Ta-lanta, 2017, Vol. 164, pp. 159-163.

Ponten E., LC GC North Am., 2012, Vol. 30, pp. 36-42.

Wu J., Bicker W., Lindner W., J. Sep.Sci., 2008, Vol. 31, pp. 1492-1503.

Ibrahim M.E.A., Lucy C.A., In HILIC. A Guide for practioners. Olsen B.A., Pack B.W., Vitha M.F. Eds., Wiley Hobonen, N.Y., Chapter 2, 2013, pp. 43-85.

Bell D.S., Majors R.E., LC GC Europe, 2016, pp. 102-109.

Qian K., Yang Z., Zhang F. et al., Anal. Chem., 2018, Vol. 90, pp. 8750-8755.

McCalley D.V., J. Chromat A, 2008, Vol. 1193, pp. 85-91.

Jiang Z., Smith N.W., Ferguson PP. D., Taylor M.R., Anal. Chem., 2007, Vol. 79, pp. 1243-1250.

Oiao L., Lv W., Chang M. et al., J. Chrom A, 2018, Vol. 1559, pp. 141-147.

Chirita R.I., West C., Zubrzycki S. et al., J. Chromat., 2011, Vol. 1218, pp. 5939-5963.

Arase G., Kimura S., Inegami T., J. Pharm Biomed. Anal., 2018, Vol. 158, pp. 307-316.

Padivitage N.L., Armstrong D.W., J. Sepp. Sci., 2011, Vol. 34, pp. 1636-1647.

Zhou T., Lucy C.A., J. Chrom., 2010, Vol. 1217, pp. 82-88.

Fu Q., Guo Z., Liang T., Zhang X., Xu Q. et al., Anal. Methods, 2010, Vol. 2, pp. 217-222.

Peng X., Feng Y., Hu X., Chroma-tographia, 2013, Vol. 76, No 9-10, pp. 459-465.

Persson J., Hemstrom PP., Irgum K., J. Sepp. Sci., 2008, Vol. 31, No 9, pp. 1504-1509.

Somova V.D., Bessonova E.A., Kar-czova L.A., Analitika i kontrol`, 2017, Vol. 21, No 3, pp. 241-245.

Qiao L.Z., Li H., Shan Y.H., Wang S.Y. et al., J. Chromatogr. A, 2014, Vol. 1330, No 21, pp. 40-45.

Feng J., Guo Z., Shi H., Gu J. et al., Talanta, 2010, Vol. 81, No 4-5, pp. 1870-1876.

Jacob C.C., Gallart-Agala H., da Сosta G.G. Chapter 5. HILIC and perfluorined sta-tionary phases, Fast Liquid Chromatography-Mass spectrometry methods in Food and En-vironmental analysis, 2015, pp. 149-184.

McCalley D.V., J. Chromatogr. A, 2017, Vol. 1483, pp. 71-79.

Liu M., Ostovic J., Chen E.X., Cau-chon N., J. Chromatogr. A, 2009, Vol. 1216, No 12, pp. 2362-2370.

Jandera P.P., Hájek T., Škeřiková V., Soukop J., J. Sepp. Sci., 2010, Vol. 33, pp. 841-852.

Jandera P.P., Hájek T., Staňkova M., Vyňuchalova K. et al., J. Chromatogr. A, 2012, Vol. 1268, pp. 91-101.

Willemse C.M., Stander M.A., Vestner J., Tredoux A.G.J. et al., Anal. Chem., 2015, Vol. 87, No 24, pp. 12006-12015.

Zhong L., Cheng F., Lu X., Duan Y., Wang X., Talanta, 2016, Vol. 158, pp. 351-357.

Strege M.A., Stevenson S., Lawrence S.M., Anal. Chem., 2000, Vol. 72, No 19, pp. 4629-4633.

Somella E., Salviati E, Musella S et al., Separation, 2020, Vol. 7, pp. 25-34.

Stoll D.R., Harmes D.C., Sfoples G.O. et al., Anal. Chem., 2018, Vol. 90, pp. 5923-5929.

Somella E., Salviati E., Merciani F. et al., J. Pharm. Biomed. Anal., 2019, Vol. 175, pp. 1-9.

Nguyen H.PP., Schug K.A., J. Sepp. Sci., 2008, Vol. 31, No 9, pp. 1465-1471.

Hanai T., Mass spectromet. purif. Tech., 2017, Vol. 4, pp. 123-131.

Socia A., Foley J., J. Chrom A, 2016, Vol. 1446, pp. 41-49.

Bernal J., Ares A.M., Pal J., Wiedmer S.K., J. Chrom., 2011, Vol. 1218, pp. 7438-7452.

Pyrzynska K., Sentkowska A., Crit.ReVol. Anal.Chem., 2015, Vol. 45, pp. 41-51.

Dejaegher B., Heyden Y.V., J. Sepp. Sci., 2010, Vol. 33, No 6-7, pp. 698-707.

Erkmen C., Gebrehiwat W.H., Usla B., Current Pharm analysis, 2021, Vol. 17, pp. 315-345.

Zhang Q., Yang F.Q., Hu Y.J., Xia Z.N., J. Sepp. Sci., 2017, Vol. 40, pp. 49-80.

Spagou K., Tsoukali H., Raikos N., Gika H. et al., J. Sepp. Sci., 2010, Vol. 33, pp. 716-722.

Zhong L., Cheng F., Lu X., Duan Y. et al., Talanta, 2016, Vol. 158, pp. 351-357.

Wu X., Huang Y., Sun J., Wen Y. et al., J. Chromatogr. B, 2018, Vol. 1072, pp. 40-46.

Cai X., Zou L., Dong J., Zhao L. et al., Anal. Chim. Acta, 2009, Vol. 650, pp. 10-17.

Di Palma S., Mohammed Sh., Heck Albert J.R., Nature Protocols, 2012, Vol. 7, No 11, pp. 2041-2044.

Boersema PP.J., Mohammed S., Heck A.J.R., Anal. Bioanal. Chem., 2008, Vol. 391, pp. 151-158.

Hsieh Y., J. Sepp. Sci., 2008, Vol. 31, No 9, pp. 1481-1487.

Valette J.C., Demesmay C., Rocca J.L., Verdon E., Chromatographia, 2004, Vol. 59, No 1-2, pp. 55-58.

Oertel R., Renner U., Kirch W., J. Pharm. Biomed. Anal., 2004, Vol. 35, No 3, pp. 633-636.

Jiang W., Fischer G., Girmay Y., Irgum K., J. Chromatogr. A, 2006, Vol. 1127, No 1-2, pp. 82-86.

Yoshida T., J. Biochem. Biophys. Methods, 2004, Vol. 60, No 3, pp. 265-274.

Wujcik C.E., Tweed J., Kadar E.PP., J. Sepp. Sci., 2010, Vol. 33, pp. 826-831.

Padivitage N.L.T., Dissanayake M.K., Armstrong D.W., Anal. Bioanal. Chem., 2013, Vol. 405, No 27, pp. 8837-8841.

Zacharias L.G., Hartmann A.K., Song E.H., Zhao J.F. et al., J. Proteome Res., 2016, Vol. 15, No 10, pp. 3624-3628.

Alpert A.J., Shukla M., Shukla A.K., Zieske L.R. et al., J. Chromatogr. A, 1994, Vol. 676, No 1, pp. 191-198.

Periat A., Fekete S., Cusumano A., Veuthey J.-L. et al., J. Chromatogr. A, 2016, Vol. 1448, pp. 81-86.

d’Atri VOL., Fekete S., Beck A., Lauber M. et al., Anal. Chem., 2017, Vol. 89, pp. 2086-2091.

Peritat A., Krull I.S., Guillarme D., J. Sepp. Sci., 2015, Vol. 38, pp. 357-367.

Murakami H., Horiba R., Iwata T., Miki Y. et al., Talanta, 2018, Vol. 177, pp. 12-19.

Chirita R.-I., West C., Finaru A.-L., Elfakir C., J. Chromatogr. A, 2010, Vol. 1217, pp. 3091-3096.

Janvier S., De Sutter E., Wynendaele E., De Spiegeleer B. et al., Talanta, 2017, Vol. 174, pp. 562-567.

Li Q., Lynen F., Wang J. et al., J. Chrom A, 2012, Vol. 1255, pp. 237-243.

Ulyanowakii N.V., Kosaykov D.S., Pikovskoi I.I., Shavrina I.S. et al., Chroma-tographia, 2018, Vol. 8, pp. 891-900.

Sentkowska A., Pyrzynska K., J. Chrom. B, 2018, Vol. 1074-1075, pp. 8-15.

Salome R., Corinne L.B., Gael C. et al., J.Mass.Spectr., 2015, Vol. 50, pp. 175-181.

Rossignoli A.E., Marino C., Martin H., Blanco J., J. Agric. Marine Biology, 2015, Vol. 2 (2), pp. 20-25.

Garcia-Gomez D., Rodriguez-Gonsalo E., Carabias-Martinez R., Trends Anal.Chem., 2013, Vol. 47, pp. 111-128.

Marrubini G., Mendoza B.E.C., Mas-solini Q., J. Sepp. Sci., 2010, Vol. 33, pp. 803-816.

Dejneka V.I., Saenko I.I., Blinova I.P., Zh. analit.khim., 2016, Vol. 71, pp. 310-314.

Sy`chev K.S., Sty`skin I.E., Analitika, 2012, No 4, pp. 56-61.

Sommella E., Pepe G., Pagano F. et al., Food Res. Int., 2015, Vol. 76, pp. 466-477.

Kalili K.M., de Villiers A., J.Sepp. Sci., 2010, Vol. 33, pp. 853-863.

Willemse C.M., Stenden M.A., de Villiers A., J.Chrom A., 2013, Vol. 1319, pp. 127-140.

Kalili K.M., de Villiers A., J. Chrom., 2009, Vol. 1216, pp. 6274-6284.

Zhang H., Guo Z., Zhang F., Xu Q. et al., J. Sepp. Sci., 2008, Vol. 32, pp. 1623-1627.

Yanagida A, Murao H, Ohnishi-Kameyama M, Yamakawa Y. et al., J Chro-matogr A., 2007, Vol. 1143(1-2), pp. 153-161.

Published
2021-12-11
How to Cite
Yashin , Y. I., & Yashin , A. Y. (2021). 30th anniversary of hydrophilic interaction chromatography. Sorbtsionnye I Khromatograficheskie Protsessy, 21(5), 708-716. https://doi.org/10.17308/sorpchrom.2021.21/3777