Diagnosis of surface and bulk microstructure changes of the MK-40 sulfocation exchange membrane at electrodialysis of highly mineralized natural waters

  • Э. М. Акберова Akberova Elmara M. – PhD (Сhem.), leading engineer of the Analytical Chemistry Department, Voronezh State University, Voronezh, e-mail: elmara_09@inbox.ru
  • А. М. Яцев Yatsev Andrey M. – the competitor for science degree of Master Science in Chemistry of the Analytical Chemistry Department, Voronezh State University, Voronezh, e-mail: yatsevandrey@mail.ru
  • Е. А. Голева Goleva Elena A. – senior assistant of the Analytical Chemistry Department, Voronezh State University, Voronezh
  • В. И. Васильева Vasil’eva Vera I. – Dr. Sci. (Сhem.), the professor of the Analytical Chemistry Department, Voronezh State University, Voronezh, e-mail: viv155@mail.ru
  • М. Д. Малыхин Malykhin Mikhail D. – PhD (Сhem.), leading engineer of the Analytical Chemistry Department, Voronezh State University, Voronezh
Keywords: cation exchange membrane, reverse electrodialysis, natural waters.

Abstract

An important limitation which worsens efficiency of electrodialysis during natural waters demineralization
is to reduce of the membrane electrochemical activity under the influence of polarization and temperature
effects as well as salt fouling. The purpose of this work is the detection of the relationship between
the structural and transport properties of MK-40 sulfocation exchange membrane after prolonged use in the
reverse electrodialysis stack during desalination of natural waters.
Structural changes of the MK-40 cation exchange membrane material after continuous operation in
the reverse electrodialysis stack are evaluated by the scanning electron microscopy. The physicochemical
characteristics of membranes were identified by the standard procedures. The conductivity was measured by
the contact–difference method. The diffusion properties of membranes were determined by estimating the
amount of electrolyte, which was transported through the membrane to the water.
The influence of the morphological changes and scaling after electrodialysis of natural waters on the
electrochemical and physicochemical properties of the MK-40 cation exchange membrane is established.
Possible reasons of deterioration of membrane operational properties at the process of demineralization of
natural water by electrodialysis are revealed. The degradation of the membrane transport properties as a result
of scaling, affecting not only the surface but also the bulk of the membrane, is established. Formation of
slightly soluble compounds leads to blocking of functional groups and transport channels of the membrane,
decreasing of selectivity and electrical conductivity, and hindering of the diffusion processes.

Downloads

Download data is not yet available.

References

1. Uilson Dzh.R. Demineralizatsiya metodom elektrodializa. M., Gosatomizdat, 1963, 351 p.
2. Korngold E., de Körösy F., Rahav R., Taboch M.F., Desalination, 1970, Vol. 8, pp. 195-220. DOI: Available at: http://www.sciencedirect.com/science/article/pii /S0011916400802301 (accessed 24.02.2017)
3. Kastyuchik A.S., Shaposhnik V.A., Sorbtsionnyye i khromatograficheskiye protsessy, 2009, Vol. 9, No 1, pp. 51-57.
4. Ivakina E.I., Shatalov A.Ya., Isayev N.I, Ionoobmennyye membrany v elektrodialize. Leningrad, Khimiya, 1970, pp. 78-84.
5. Bobreshova O.V., Lapshina T.E., Shatalov A.Ya., Zhurnal prikladnoy khimii, 1980, Vol. 53, No 3, pp. 665-667.
6. Bobreshova O.V., Shatalov A.Ya., Zhurnal fizicheskoy khimii, 1977, Vol. 51, No 1, pp. 203-204.
7. Shaposhnik V.A., Zubets N.N., Strygina I.P., Mill’ B.E., Russ. J. Applied Chem., 2001, Vol. 74, No. 10, pp. 1653-1657. DOI: Available at:
http://link.springer.com/article/10.1023/A%3A1 014896916981 (accessed 24.02.2017)
8. Katz W.E., Desalination. 1979. Vol. 28, pp. 31-40. DOI: Available at: http://www.sciencedirect.com/science/article/pii /S0011916400881242 (accessed 24.02.2017)
9. Grebenyuk V.D., Strizhak M.P., Khimiya i tekhnologiya vody, 1985, Vol. 7, No 5, pp. 39-40.
10. Ponomarev M.I., Shendrik O.R., Grebenyuk V.D., Antonov YU.A. et al., Khimiya i tekhnologiya vody, 1989, Vol. 11, No 1, pp. 58-60.
11. Mikhaylin S., Nikonenko V., Pourcelly G., Bazinet L., J. of Membrane Science, 2014, Vol. 468, pp. 389-399. DOI: Available at:
http://www.sciencedirect.com/science/article/pii /S0376738814004219 (accessed 24.02.2017)
12. Grebenyuk V.D. Elektrodializ. Kiev, Tekhnika, 1976, 160 p.
13. Lopatkova G., Basova O., Volodina E., Pismenskaya N. et al., "Environmental Problems and Ecological Safety", Proceedings of the International Workshop, September - October 2004, Germany, pp. 145-153.
14. Saldadze G.K., Ionselektivnyye membrany i elektromembrannyye protsessy. Leningrad, NIITEKhim, 1970, pp. 18-24.
15. Berezina N.P., Ivina O.P., Rubinina D.V. Diagnostika ionoobmennykh membran posle real'nogo elektrodializa, Krasnodar, Kuban. Gos. Univ. Publ., 1990, 11 p.
16. Saldadze K.M., Klimova S.V., Titova N.A., Bazikova G.D., Ionoobmennyye membrany v elektrodialize. Leningrad, Khimiya, 1970, pp. 65-75.
17. Pis'menskaya N.D., Nikonenko V.V., Mel'nik N.A., Shevtsova K.A., Membrany i membrannyye tekhnologii, 2011, Vol. 1, No 3, pp. 201-212.
18. Vasil’eva V.I., Akberova E.M., Zhiltsova A.V., Chernykh E.I. et al., J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, Vol. 7, No 5, pp. 833-840. DOI: Available at: http://link.springer.com/article/10.1134/S10274 51013050194 (accessed 24.02.2017)
19. Akberova E.M., Malykhin M.D., Sorbtsionnyye i khromatograficheskiye protsessy, 2014, Vol. 14, No 2, pp. 232-239.
20. Vasil’eva V.I., Pismenskaya N.D., Akberova E.M., Nebavskaya K.A., Russ. J. Phys. Chem. A, 2014, Vol. 88, No 8, pp. 1293-1299. DOI: Available at:
http://link.springer.com/article/10.1134/S00360 24414080317 (accessed 24.02.2017)
21. Vasil'eva V.I., Akberova E.M., Shaposhnik V.A., Malykhin M.D., Russ. J. Electrochem, 2014, Vol. 50, pp. 789-797. DOI: Available at:
http://link.springer.com/article/10.1134/S10231 9351408014X (accessed 24.02.2017)
22. Vasil’eva V.I., Kranina N.A., Malykhin M.D., Akberova E.M. et al., J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, Vol. 7, No 1, pp. 144-153. DOI: Available at: http://link.springer.com/article/10.1134/S10274 51013010321 (accessed 24.02.2017)
23. Berezina N.P., Kononenko N.A., Dvorkina G.A., Shel'shedov N.V. Fizikokhimicheskiye svoystva ionoobmennykh materialov. Krasnodar, Kuban. Gos. Univ. Publ., 1999, 82 p.
24. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P., Advances in Colloid and Interface Science, 2008, Vol. 139, pp. 3-28. DOI: Available at:
http://www.sciencedirect.com/science/article/pii /S0001868608000286 (accessed 24.02.2017)
25. Shaposhnik V.A., Yemel'yanov D.Ye., Drobysheva I.V., Kolloidnyy zhurnal, 1984, Vol. 46, No 4, pp. 820-822.
26. Lur'ye Yu.Yu. Spravochnik po analiticheskoy khimii. Moscow, Al'yans, 1989, 446 p.
27. Gnusin N.P., Grebenyuk V.D., Pevnitskaya M.V. Elektrokhimiya ionitov. Novosibirsk, Nauka, 1972, 200 p.
28. Nagaaki T., Journal of the Chemical Society of Japan, 1973, No 3, p. 482.
Published
2018-02-21
How to Cite
Акберова, Э. М., Яцев, А. М., Голева, Е. А., Васильева, В. И., & Малыхин, М. Д. (2018). Diagnosis of surface and bulk microstructure changes of the MK-40 sulfocation exchange membrane at electrodialysis of highly mineralized natural waters. Sorbtsionnye I Khromatograficheskie Protsessy, 17(2), 313-322. https://doi.org/10.17308/sorpchrom.2017.17/386