Analysis of the morphology of the surface of microfiltration membranes MFFK, MPS by atomic force microscopy

  • О. А. Ковалева Kovaleva Olga A. – Associate professor of applied geometry and computer graphics, Ph.D., Tambov State Technical University, Tambov
  • С. И. Лазарев Lazarev Sergey I. – professor of applied geometry and computer graphics, grand Ph.D, Tambov State Technical University, Tambov
  • И. А. Осипова Osipova Irina A. – Associate рrofessor of Physics, Ph.D., Tambov State Technical University, Tambov
  • С. В. Ковалев Kovalev Sergey V. – Associate professor of applied geometry and computer graphics, grand Ph.D, Tambov State Technical University, Tambov, e-mail: sseedd@mail.ru
  • К. К. Полянский Polyansky Konstantin K. – рrofessor of the department of commerce and commodity, grand Ph.D, Voronezhsky branch "Russian University of Economics. G.V. Plekhanov ", Voronezh
Keywords: atomic force microscopy, surface morphology, membrane

Abstract

The surface morphology of the polymeric microfiltration membranes was investigated by atomic-force microscopy. Manufactured new and used (which were got after technological solution separation by microfiltration process) microfiltration membranes MFFK 0.45 µm (fine-pored white film on a nonwoven substrate based on the hydrophobic PTFE composite membrane) and MPS 0,45 µm (white film based on polyethersulfone) are produced by LLC «Scientific-production enterprise «Technofilter». The mature molasses mash from OJSC «BIOHIM» (Rasskazovo) was used in the microfiltration process as process liquid for used membranes MFFK and MPS. The study of the surface morphology of the microfiltration membranes was carried out in the flat and topographic mode (for the study of surface topography) and phase contrast (for recognition of areas differing in porous composition (relative proportion of voids), the adhesion and elastic properties). Analysis of the results obtained by atomic-force microscopy allowed to establish morphology differences of the original porous microfiltration materials and samples after solutions separation of the mature molasses mash by microfiltration with excessive transmembrane pressure 0.05 MPa. The surface contrast of the flat 2D and the visual 3D images of the new and used MFFK and MPS membranes were used to identify porous and interporous sections of membranes before and after the microfiltration process. It is observed in comparison of obtained contrast images of the membranes surfaces that the pores plots of new MFFK and MPS membranes with the selected scan area 100 µm2 have wider mixed form pores (length and width are 0.4-0.6 µm), and used membrane have mixed form pores with domination of elongated slits (length is 0.3-0.5 µm and width is 0.2-0.3 µm). Reducing of the pores size of the membranes, which were used, shows that membrane is clogged with particles of yeast and polysaccharides that are present in the treated vinasse solution

Downloads

Download data is not yet available.

References

1. Vasil'eva V.I., Bitjuckaja L.A., Zajchenko N.A., Grechkina M.V. et al., Sorbtsionnye i khromatograficheskie protsessy 2008, Vol. 8, No. 2, рр. 260-271.
2. D'jakonova O.V., Sokolova S.A., Zjablov A.N., Zhibrova Ju.A, Sorbtsionnye i khromatograficheskie protsessy 2008, Vol. 8, No. 5, рр. 863-868.
3. Wyart Y., Georges G., Deumie C., Amra C. et al., J. of Membrane Science, 2008, Vol. 315, рр 82-92.
4. Kalinin V.V., Filippov A.N., Hanukaeva D.Ju., Trudy RGU Nefti i gaza im. I.M. Gubkina. Avtomatizacija, modelirovanie i jenergoobespechenie, 2012, No 1(266), рр. 129-136.
5. Kotov V.V., Grechkina M.V., Peregonchaja O.V., Zjablov A.N. , Sorbtsionnye i khromatograficheskie protsessy2016, Vol. 16, No 1, рр. 118-122.
6. Zajchenko N.A., Vasil'eva V.I., Grigorchuk O.V., Zjablov A.N. et al., Sorbtsionnye i khromatograficheskie protsessy 2010,Vol. 10, No 5, рр. 745-749.
7. Powell L.C., Hilal N., Wright C.J., Desalination, 2017, Vol. 404, рр. 313-321.
8. Johnson D., Hilal N., Desalination, 2015, Vol. 356, рр. 149-164.
9. Boussu K., Van der Bruggen B., Volodin A., Van Haesendonck C. et al., Desalination, 2006, Vol. 191, рр. 245–253.
10. Vrijenhoek E.M., Hong S., Elimelech M., J. of Membrane Science, 2001, Vol. 188, рр. 115-128.
11. Boussu K., Van der Bruggen B., Volodin A., J. of Colloid and Interface Science, 2005, Vol. 286, рр. 632-638.
12. Lee H.S., Im S.J., Kim J.H., Desalination, 2008, Vol. 219, рр. 48-56.
13. Xindong L., Lei W., Wanfu H., Juan L. et al., J. of Engineering Science and Technology Review, 2016, Vol. 9 (3), рр. 74-79.
14. Quanfu A., Feng L., Yanli J., Huanlin C., J. of Membrane Science, 2011, Vol. 367, No 1-2, рр. 158-165.
15. Gizli N., Chemistry& Chemical Technology, 2011, Vol. 5, No 3, рр. 327-331.
16. Pasport № 81 na membrannyj disk MFFK – 0.45, nomer partii 52. data vypuska - 03.2016. OOO NPP «Tehnofil'tr», g. Vladimir.
17. Pasport № 79 na membrannyj disk MPS – 0.45, nomer partii 15. data vypuska - 03.2016. OOO NPP «Tehnofil'tr», g. Vladimir.
18. Skanirujushhij zondovyj mikroskop NanoEducator. Rukovodstvo pol'zovatelja. Zelenograd, NT-MDT, 2008, 137 р.
19. Krisilova E.V., Eliseeva T.V., Grechkina M.V., Sorbtsionnye i khromatograficheskie protsessy, 2010, Vol. 10, No 1, рр. 103-107.
20. Kapkin V.D., Savineckaja G.A., Chapurin V.I. Tehnologija organicheskogo sinteza. Moskow, Himija, 1987. 400 p.
Published
2018-02-22
How to Cite
Ковалева, О. А., Лазарев, С. И., Осипова, И. А., Ковалев, С. В., & Полянский, К. К. (2018). Analysis of the morphology of the surface of microfiltration membranes MFFK, MPS by atomic force microscopy. Sorbtsionnye I Khromatograficheskie Protsessy, 17(4), 608-615. https://doi.org/10.17308/sorpchrom.2017.17/419