Effect of copper and nickel hydroxides on water dissociation reaction during electrodialysis in overlimiting conditions

  • С. В. Шишкина Shishkina Svetlana V. – Ph.D., prof., Department of Technology of Inorganic Substances and Electrochemical Productions, Vyatka State University, Kirov, e-mail: vgu_tep@mail.com
  • Е. А. Желонкина Zhelonkina Evgenia A. – lecturer, Department of Technology of Inorganic Substances and Electrochemical Productions, Vyatka State University, Kirov, e-mail: eazhelonkina@gmail.com
  • Б. А. Ананченко Ananchenko Boris A. – assistent, Department of Inorganic and Physical Chemistry, Vyatka State University, Kirov
Keywords: cation-exchange and anion-exchange heterogeneous membranes, catalytic activity of functional groups and sparingly soluble hydroxide precipitates with respect to the water dissociation reaction

Abstract

The formation of sparingly mineral precipitates on the membrane surface complicates the practical implementation and deteriorates economic parameters of the electrodialysis process. The most serious problems arise in the demineralization of hard natural waters and solutions containing toxic heavy metals ions.

The aim of this work was to study the catalytic activity of sparingly soluble precipitates of copper and nickel hydroxides with respect to the water dissociation reaction at the interface the cation-exchange membrane/copper or nickel sulfate solution. It was shown that the presence of catalytically active secondary and tertiary aminogroups in the anion-exchange membranes or their formation during electrodialysis leads to the appearance of hydrogen ions stream moving from the anion-exchange membrane in the desalting chamber. Cation-exchange membranes in the region of overlimiting current densities form precipitates of copper or nickel hydroxides catalytically active with respect to the water dissociation reaction, which causes the flux of hydroxyl ions from the cation-exchange membrane.

In the case of electrodialysis of copper sulfate solution, the desalting chamber solution is acidified, because the precipitate of copper hydroxide gradually degrades to catalytically inactive copper oxide, whereupon the flux of hydrogen ions from the anion-exchange membrane predominates. In the case of electrodialysis of a solution of nickel sulfate, the precipitate does not change the composition and retains the catalytic activity, which leads to a stable alkalization of the desalting chamber solution and a drastic decrease in the transport numbers of the electrolyte ions.

Downloads

Download data is not yet available.

References

1. Bernardes A.M. et al., Met. Finish, 2000, Vol. 98, No 11, pp. 52-114.
2. Kurniawan T.A. et al., Chem. Eng. J, 2006, Vol. 118, No 1-2, pp. 83-98.
3. Tison R.P., Mikhail Y.M., J. Memb, Sci, 1982, Vol. 11, No 2, pp. 147-156.
4. Belova E.I. et al., J. Phys. Chem. B., 2006, Vol. 110, No 27, pp. 13458-13469.
5. Song J.H., Yeon K.H., Moon S.H., J, Memb, Sci, 2007, No 1-2, pp. 165-171
6. Rubinstein I. et al., Desalination. 1984. Vol.51. pp.55-60.
7. Nikonenko V.V., Коvalenko А.V. et al, Desalination, 2014, Vol. 342, pp. 85.
8. Vasil'eva V.I., Akberova E.M., Zabolotskiy V.I., Elektrokhimiya, 2017, Vol. 53, No4, pp. 452-465.
9. Simons R., Electrochimica Acta, 1984, Vol.29, pp. 151-158.
10. Choi J.-H., Lee H.-J., Moon S.-H., J. Colloid Interface Sci, 2001, No 1, pp. 188-195.
11. Zabolotskiy V.I., Shel'deshov N.V., Gnusin N.P., Uspekhi khimii, 1988, Vol.57, No8, pp.1403-1414.
12. Tanaka Y., J. Memb, Sci, 2007, Vol. 303, No 1-2, pp. 234-243.
13. Tanaka Y., Elektrokhimiya. 2012. Vol. 48. No7. pp. 739-755.
14. Mel'nikov S.S. i dr., Membrany i membrannye tekhnologii, 2011, Vol. 1, No 2, pp.149-156.
15. Zabolotskiy V.I., Ganych V.V., Shel'deshov N.V., Elektrokhimiya, 1991, Vol. 27, pp. 1245-1249.
16. Zabolotskiy V.I. i dr., Elektrokhimiya, 2012, Vol.48, No6, pp. 721-731.
17. Vasil'eva V.I. i dr., Kondensirovannye sredy i mezhfaznye granitsy, 2014, Vol.16, No3, pp.257-261.
18. Berezina N.P. Fiziko-khimicheskie svoystva ionoobmennykh materialov. Krasnodar, Izd-vo Kuban, gos,un-ta, 1999, 82 pp.
19. Malinovskaja E.M., Shaposhnik V.A., Isaev N.I., Teorija i praktika sorbcionnyh processov, 1974, Vyp, 9, pp. 158.
20. Saldadze K.M., Kopylova-Valova V.D. Kompleksoobrazuyushchie ionity (kompleksity), M,: Khimiya, 1980, 336 pp.
21. Vasil'eva V.I., Grigorchuk O.V. i dr., Sorbtsionnye i khromatograficheskie protsessy, 2008, Vol.8, No,3, pp.359-379.
22. Nevakshenova E.E., Korzhova E.S., Pis'menskaya N.D., Sorbtsionnye i khromatograficheskie protsessy, 2012, Vol. 12, No 6, pp. 893-900.
23. Choi J.H., Moon S.H., J. Colloid Interface Sci, 2003, Vol. 265, pp. 93-100.
24. Remi G. Kurs neorganicheskoy khimii, M,: Mir, 1974, Vol.2. 775 pp.
25. Lur'e Yu.Yu. Spravochnik po analiticheskoy khimii. M.: Khimiya, 1989. 448 pp.
26. Zabolotskiy V.I., Nikonenko V.V. Perenos ionov v membranakh. M.: Nauka, 1996. 392 pp.
27. Zhelonkina E.A., Shishkina S.V., Kononova T.V., Membrany i membrannye tekhnologii, 2013, Vol. 3, No 1, pp.63-68.
Published
2018-02-22
How to Cite
Шишкина, С. В., Желонкина, Е. А., & Ананченко, Б. А. (2018). Effect of copper and nickel hydroxides on water dissociation reaction during electrodialysis in overlimiting conditions. Sorbtsionnye I Khromatograficheskie Protsessy, 17(4), 674-681. https://doi.org/10.17308/sorpchrom.2017.17/427