Cellulose sorbent modification as the regulation instrument of its kinetic characteristics and sorption capacity with regard to copper (II) ions
Abstract
Russia possesses one of the highest water potentials in the world. However, nowadays because of the pollution and foulness the considerable part of rivers and lakes has lost their quality as the drinking water source. In recent years nickel (II), manganese (II), zinc (II) and copper (II) hold the leading position among non-organic contaminants. The essential role in developing water treatment technologies focused on heavy-metal ions removal belongs to the sorption methods, including biosorbents which doubtless advantage is the cheap renewable raw material resources base. The main restrictions of biosorbents use are connected with not high kinetic characteristics, low selectivity and comparatively low sorption capacity. The purpose of present investigation was the developing of modification method of cellulose sorbent with enhanced equilibrium and kinetic characteristics and the capability assessment and practicability of its use for Cu (II) ions extraction from water solutions. Polyethyleneimine dithiocarbamate Metalsorb FZ which can be treated as «integral complexing agent», containing high molecular weight «matrix» (polyethyleneimine) and «active complex former units» (sodium dithiocarbamate), was used as modification agent. To improve the modification process stability the sorbent was additionally cured by glutaric aldehyde. The concentration of dithiocarbamate units in the material was 10% (wt). The investigations were fulfilled on model systems with Cu (II) ion’s concentrations 0.01-10000 mg/dm3. The content of Cu(II) ions in the solution has been controlled spectrophotometrically in the presence of diethyldithiocarbamate and by AAS method. The kinetic and thermodynamic characteristics of the sorption process have been observed. For the mathematical description of static equilibrium Langmuir and Freundlich models have been used. It has been found out that the sorption process can be sufficiently described by the kinetic model of pseudo-second order. It has been shown that proposed modification method considerably improves its equilibrium and kinetic characteristics: to enhance the sorption capacity and to cut time of achieving the sorption equilibrium. The possibility of achieving the degree of extraction 90-97% proclaims the practicability of modified sorbent use in water treatment process for copper ions (II) removal from water solutions in the concentration range not above 1 mg/dm3.
Downloads
References
2. Environmental materials and waste. Resource recovery and pollution prevention / Ed. Prasad M.N.V. and Shih Kaimin. London; New York, Acad. Press, 2016, 707 p.
3. Argun M., Dursun S., Ozdemir C., Karatas M., J. Hazard. Mater., 2007, Vol. 141, pp. 77-85.
4. Chakravarty S., Pimple S., Hema S., Chaturvedi T. et al., J. Hazard. Mater., 2008, Vol. 159, No 2, pp. 396-403.
5. Rao K., Anand S., Venkateswarlu P., BioResources, 2010, Vol. 5, No 1, pp. 438-454.
6. King P., Srinivasa P., Kumar Y., J. Hazard. Mater., 2006, Vol. 136, No 3, pp. 560-566.
7. Hubbe М., Hasan S., Ducoste J., BioResources, 2011, Vol. 6, No 2, pp. 2161-2287.
8. Su P., Granholm K., Pranovich A., Harju L. et al., BioResources, 2012, Vol. 7, No 2, pp. 2141-2155.
9. Shukla S.R., Pai R.S., BioResour. Technol., 2005, Vol. 96, pp. 1430-1438.
10. Torres J.D., Faria E.A., Prado A.G.S., J. Hazard. Mater. B, 2006, Vol. 129, No 1, pp. 239-243.
11. Escudero C., Gabaldon C., Marzal P., Villaescusa I., J. Hazard. Mater., 2008, Vol. 152, No 2, pp. 476-485.
12. Sato T., Karatsu K., Kitamura H., Ohno Y., J. Soc. Fiber. Sci. & Technol., 1983, Vol. 39, No 12, pp. 519-524.
13. Zolotov Yu.A., Cizin G.I., Dmitrienko S.G., Morosanova E.I., Sorbcionnoe koncentrirovanie mikrokomponentov iz rastvorov: primenenie v neorganicheskom analize, M., Nauka, 2007, 320 p.
14. Yur'ev V.I., Pozin S.S., Kolloidnyj zhurnal, 1961, Vol. 23, No 4, pp. 499-503.
15. Nikiforova T.E., Bagrovskaya N.A., Kozlov V.A., Lilin S.A., Himiya rastitel'nogo syr'ya, 2009, No 1, pp. 5-14.
16. Shukla S.R., Sakhardande V.D., J. Appl. Polym. Sci., 1992, Vol. 44, No 5, pp. 903-910.
17. Muzarelli R.A.A., Marcotrigiano G., Liu C.-S., Freche A., Analyt. Chem., 1967, Vol. 39, No 14, pp. 1762-1766.
18. Podchajnova V.N., Simonova L.N. Med'. M., Nauka Publ., 1990, 279 p.
19. Kabanov N.M., Kokorin A.I., Rogacheva V.B., Zezin A.B., Vysokomolek. soed. A, 1979, Vol. 21, No 4, pp. 118-126.
20. Bekturov E.A., Bimendina L.A., Kudajbergenov S.E., Polimernye kompleksy i katalizatory. Alma-Ata, Nauka Publ., 1982, 191 p.
21. Rao P.S., Smitha B., Sridhar S., Krishnoieh A., Separ. and Purif. Technol., 2006, Vol. 48, No 3, pp. 244-254.
22. Salamatinia B., Kamaruddin A.H., Abdullah A.Z., J. Appl. Sci., 2007. Vol. 7, No 15, pp. 2020-2027.
23. Sawalha M.F., Peralta-Videa J.R., Romero-Gonzales J., Duarte-Gardea M. et al., J. Chem. Thermodyn., 2007, Vol. 39, No 3, pp. 488-492.
24. Dang V.B.H., Doan H.D., Dang-Vu T., Lohi A., BioResour. Technol., 2009, Vol. 100, No 1, pp. 211-219.
25. Nikiforova T.E., Kozlov V.A., ZHurn. Prikl. Himii, 2010, Vol. 83, Vyp. 10, pp. 1642-1645.
26. Adsorption from solution at the solid/liquid interface / Ed. Parfitt G.D. and Rochester C.H. London, Academic Press, 1983, 416 p.
27. Nikiforova T.E., Kozlov V.A. , Fizikohimiya poverhnosti i zashchita materialov, 2012, Vol. 48, No 3, pp. 262-266.
28. Zheng L.S., Dang Z., Yi X.Y., Zhang Н., J. Hazard. Mater., 2010, Vol. 176, No 1-3, pp. 650-656.
29. Ghodbane I., Hamdaoui О., J. Hazard. Mater., 2008, Vol. 160, No 2-3, pp. 301-309.
30. Ghodbane, I., Nouri L., Hamdaoui О., Chilm М., J. Hazard. Mater., 2007, Vol. 152, No 1, pp. 148-158.