HPLC analysis of malonic dialdehyde in plasma and saliva with the purification of derivatives on super-cross-linked polystyrene (Puroxep-270)

  • Alexey А. Dutov MD, prof. Department of Chemistry of Transbaikal State University, Chita, e-mail: dutovaa@yandex.ru
  • Denis А. Nikitin post graduate student, department of analytical chemistry, chemical faculty, Voronezh State University, Voronezh, e-mail: nikitinnd@gmail.com
  • Alena V. Ermolina ophthalmologist of the Innovation Clinic "Academy of Health", Chita
  • Julia L. Lukyanova Head of Neurology Department, Clinical Hospital No. 1, Chita
  • Maria N. Mishchenko Ph.D, physician, Medical Academy, Chita
  • Nadezhda А. Shemyakina assistant, Department of Total Surgery, Medical Academy, Chita
  • Lyudmila V. Rudakova doctor of science, head of Department of pharmaceutical chemistry and pharmaceutical technology, pharmaceutical faculty, Voronezh State Medical University, Voronezh, е-mail: vodoley65@mail.ru
Keywords: HPLC, malondialdehyde, 2--thiobarbituric acid, hyper cross-linked polystyrene, plasma, saliva

Abstract

Malondialdehyde (MDA) is a marker of oxidative stress, but its determination in biological fluids is quite a challenge. In its native form, malonic dialdehyde practically does not determine. The main problem is the choice of the method of hydrolysis of plasma and the method of deproteinization, which significantly affects the yield of malonic dialdehyde. The aim of this work was to develop a simple and reproducible way to determine free MDA in blood plasma and saliva.

The investigations were carried out by HPLC: a high pressure pump (Shimadzu LC-20AT Prominence), a spectrophotometric detector (Shimadzu SPD-20A Prominence), a manual injector (Rheodyne 7725i), a chromatographic column Luna 150´4.6 mm, C18 (2), 5 μm (Phenomenex, USA) with an efficiency of about 8500 TT. For protection, a 0.2 micron pre-column filter (Supelco, USA) was used. Data processing was carried out using software («Multichrome» version 3.0, Ampersand).

As a derivatization reagent, a solution of 2-thiobarbituric acid was proposed. The optimal way of deproteinization was chosen. A technology of solid-phase extraction / purification of derivatives has also been developed. This procedure allows not only to clean, but concentrate the extract, which increases the sensitivity of the determination. Cartridges with super-cross-linked polystyrene Purosep-270 were used for solid-phase extraction.

The obtained chromatographic results showed that the yield of MDA after the step of solid-phase purification was 80-84% (n=33). The use of the solid-phase purification procedure made it possible to compensate for the dilution effect of the extracts of the bioassay resulting from the sample preparation, thereby increasing the sensitivity of the assay. As a result, there is no need for fluorometric detection and, as it follows from chromatograms, detection in the visible range at 530 nm is possible. The limit of quantitative detection (LOQ) was 0.05 ng per injection at a signal-to-noise ratio of 10.

The results of the analysis can be used for diagnosis since the concentration of MDA in saliva can be affected not only by systemic but local diseases of the oral cavity. For this aim it is necessary to accumulate a database and take into account the current conditions (storage of biomaterial, conditions for preparation of the standard and derivatization reagent, conditions for derivatization and solid-phase cleaning)

Thus, the developed sorption-chromatographic method for determining total malonic dialdehyde in blood plasma and saliva after derivatization with 2-thiobarbituric acid and solid phase purification / concentration (if it is necessary) is simple, well reproducible and can be recommended for routine clinical analyzes.

Downloads

Download data is not yet available.

References

1. Del Rio D, Stewart AJ, Pellegrini N., Nutrition, Metabolism & Cardiovascular Diseases, 2005, Vol. 15, pp. 316-328. DOI: 10.1016 / j.numecd.2005.05.003.
2. Domijan AM, Ralić J, Radić Brkanac S, Rumora L, Žanić-Grubišić T., Biomed Chromatogr., 2015, Vol. 29(1), pр. 41-46. DOI: 10.1002 / bmc.3361.
3. Novo Erica and Parola Maurizio. Fibrogenesis & Tissue Repair, 2008, Vol. 1(5), рр. 1-58.
4. Shibamoto T. Journal of Pharmaceutical and Biomedical Analysis, 2006, Vol. 41, pр. 12-25. DOI:10.1016 / j.jpba.2006.01.047.
5. Carbonneau MA, Peuchant E, Sess D, Canioni P . et al., Clin Chem, 1991, Vol. 37/8, pр. 1423-1429.
6. Grotto D, Santa Maria LD, Boeira S, Valentini J. et al., , Journal of Pharmaceutical and Biomedical Analysis, 2007, Vol. 43, pр. 619–624. DOI:10.1016 / j.jpba.2006.07.030
7. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L. , J. Chromatogr. B Analyt. Technol. Biomed. Life Sci, 2005, Vol. 827, pр. 76-82. DOi:10.1016 / j.jchromb.2005.06.035
8. Mao J, Zhang H, Luo J, Li L, Zhao R, Zhang R, Liu G. , J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, Vol. 832, pр. 103-108. DOI:10.1016 / j.jchromb.2005.12.041
8. Lepage G, Munoz Gl, Champagne J and Roy CC. , Anal. Biochem, 1991, Vol. 197, pр. 277-283.
9. Marnett LJ, Bienkowski MJ, Raban M,Tuttle MA., Analytical Biochemistry, 1979, Vol. 99, pр. 458-463.
10. Korchazhkina O, Exley C, Spencer SA. , Journal of Chromatography B, 2003, Vol. 794, pр. 353–362. DOI:10.1016 / S1570-0232(03)00495-1
11. Templar J, Kon SP, Milligan TP, Newman DJ, Raftery MJ., Nephrol Dial Transplant, 1999, Vol. 14, pр. 946-951.
12. Moselhy HF, Reid RG, Yousef S, Boyle SP., Journal of Lipid Research, 2013, Vol. 54, pр. 852-858. DOI 10.1194 / jlr.D032698
12. Cordis GA, Das DK, Riedel W., J Chromatogr A, 1998, Vol. 798(1-2), pр. 117-123.
13. Pilz J, Meineke I, Gleiter CH., J Chromatogr B Biomed Sci Appl, 2000, Vol. 742(2), pр. 315-325.
14. Lord HL, Rosenfeld J, Volovich V, Kumbhare D, Parkinson B., Journal of Chromatography B, 2009, Vol. 877, рр. 1292-1298. DOI:10.1016 / j.jchromb.2008.12.035
15. El-Maghrabey MH, Kishikawa N, Ohyama K, Kuroda N., Anal Biochem, 2014, Vol. 464, pр. 36-42.
16. Sim AS, Salonikas C, Naidoo D, Wilcken DE., J Chromatogr B Analyt Technol Biomed Life Sci, 2003, Vol. 785, pр. 337-344.
17. Rudakov O.B., Selemenev V.F., Rudakova L.V. HPLC. Sorbaty, sorbenty i ehlyuenty. Voronezh, VGASU, 2016, 205 p.
18. Jehl F, Gallion C and Monteil H., J. Chromatogr. - Biomed. Appl, 1990, Vol. 96, pр. 509-548.
19. Gutteridge JMC, Tickner TR., Anal Biochem, 1978, Vol. 91(1), pр. 250-257.
20. Janero DR., Free Radic Biol Med, 1990, Vol. 9(6), pр. 515-540.
21. Guentsch A, Preshaw PM, Bremer-Streck S, Klinger G, Glockmann E, Sigusch BW., Clin Oral Investig, 2008, Vol. 12(4), pр. 345-52.
22. Dutov A.A. Biomedicinskaya hromatografiya. Moskva, GEHOTAR-media, 2016, 312 с.
23. Yeo HC, Helbock HJ, Chyu DW and Ames BN., Analytical Biochemistry, 1994, Vol. 220, pр. 391-396.
24. Shirzad A, Pouramir M, Seyedmajidi M, Jenabian N, Bijani A, Motallebnejad M., J Dent Res Dent Clin Dent Prospects, 2014, Vol. 8(1), рp. 35-39.
25. Smriti K, Pai KM, Ravindranath V, Pentapati KC., J Oral Biol Craniofac Res., 2016, Vol. 6(1), pр. 41-44.
Published
2018-02-27
How to Cite
DutovA. А., NikitinD. А., Ermolina, A. V., Lukyanova, J. L., Mishchenko, M. N., ShemyakinaN. А., & Rudakova, L. V. (2018). HPLC analysis of malonic dialdehyde in plasma and saliva with the purification of derivatives on super-cross-linked polystyrene (Puroxep-270). Sorbtsionnye I Khromatograficheskie Protsessy, 18(1), 73-82. https://doi.org/10.17308/sorpchrom.2018.18/467