Al-pillared montmorillonite clay for selective adsorption of argon from its mixture with oxygen

  • Ekaterina N. Ivanova the postgraduate student, department of technology of inorganic substances and electrochemical processes, D.I. Mendeleyev University of Chemical Technology of Russia, Moscow, E-mail: ivkatushka@gmail.com
  • Natalya N. Burmistrova past master, department of technology of inorganic substances and electrochemical processes, D.I. Mendeleyev University of Chemical Technology of Russia, Moscow, E-mail: Burmistrova.natasha1994@yandex.ru
  • Marina B. Alekhina doctor of chemical Sciences, associate prof., department of technology of inorganic substances and electrochemical processes, D.I. Mendeleyev University of Chemical Technology of Russia, Moscow, E-mail: mbalekhina@yandex.ru
  • Alexander О. Dudoladov the postgraduate student, department of technology of inorganic substances and electrochemical processes, D.I. Mendeleyev University of Chemical Technology of Russia, Moscow, E-mail: nerfangorn@gmail.com
Keywords: montmorillonite clay, pillaring, adsorption, oxygen, argon

Abstract

The purpose of the study was to investigate the influence of the calcination temperature of the montmorillonite clay, which is pylarized with aluminum, on its adsorption properties in terms of water, argon and oxygen. Clay modification conditions: Al3 + / OH ratio 1:2.4, ion exchange temperature 25°C, drying temperature 85°C, calcination temperature 300-600°С. Tableting of the samples was carried out without a binder by the dry molding method using a hydraulic press at a pressure of 780 kg. Calcination was carried out in an air atmosphere at 300-600°C. The elemental composition of the obtained samples was determined by the X-ray fluorescent method. To determine the structural and energy characteristics of the samples of the pylarized clay, nitrogen adsorption isotherms were removed at 77 K. For the thermogravimetric analysis, the samples of the initial clay and Al-PILC samples calcined after molding at 300-600°C were pre-saturated in a desiccator at room temperature by water vapor up to state of equilibrium. The equilibrium capacities of the samples for oxygen and argon were determined on the basis of the kinetic curves of adsorption of these gases at 25°C and atmospheric pressure, taken with a volumetric unit. The relative error in the measurement was 5%. The values of the separation coefficient were calculated as the ratio of the equilibrium capacities of argon and oxygen.

It was shown that in a wide range of changes in the values of the calcination temperature, the separation coefficient of the argon-oxygen mixture varies slightly. Adsorption of oxygen is maximal in samples calcined at 350-500°C. With a further increase in the calcination temperature, the adsorption of oxygen decreases somewhat. The greatest value of the separation factor of the argon-oxygen mixture, equal to 1.5, was observed in the Al-PILC (No. 6) sample calcined at 550°C.

Downloads

Download data is not yet available.

References

1. Tarasevich Yu.I. Poverkhnostnye yavleniya na dispersnykh materialakh, Kiev, Naukova dumka, 2011. 390 p.
2. Tarasevich Yu.I. Stroenie i khimiya poverkhnosti sloistykh silikatov. Kiev, Naukova dumka, 1988. 248 p.
3. Aripov E.A., Agzamkhodzhaev A.A., Aktivnye tsentry montmorillonita i khemosorbtsiya, Tashkent, Fan, 1983. 164 p.
4. Kormosh E.V. Modifitsirovanie montmorillonitovykh glin dlya kompleksnoi sorbtsionnoi ochistki stochnykh vod: Avtoref. dis. kand. tekhn. Nauk, Belgorod, 2009, 19 p.
5. Trofimova F.A. Strukturnoe i kristallokhimicheskoe obosnovanie tekhnologicheskogo modifitsirovaniya shchelochnozemel'nykh bentonitov i bentonitopodobnykh glin: Avtoref. dis. kand. geologo-mineral. nauk. M., 2006, 24 p.
6. Lazorenko G.I., Inzhenernyi vestnik Dona, 2011, Vol. 18, No 4, pp. 100-103.
7. Kloprogge J.T., Journal of Porous Materials, 1998, Vol. 5, No. 1, pp. 5-41.
8. Achma R.B., Applied Catalysis А: General., 2008, Vol. 349, No 1, pp. 20-28.
9. Brindley G.W., Sempels R.E., Clays and Clay Minerals, 1977, Vol. 12, No 3, pp. 229-237.
10. Scnoonheydt R.A., van den Eynde G., Tubbax H. et al., Clays and Clay Minerals, 1993, Vol. 41, No 5, pp. 598-607.
11. Scnoonheydt R.A., Leeman H., Scorpion A., Lenotte I. et al., Clays and Clay Minerals, 1994, Vol. 42, No 5, pp. 518-525.
12. Timofeeva M.N., Khankasaeva S.Ts., Kinetika i kataliz, 2009, Vol. 50, No 1, pp. 63-71.
13. Yang R.T., Baksh M.S.A., AIChE Journal, 1991, Vol. 37, No 5, pp. 679-686.
14. Zhu H., Lu G., J. of Porous Materials, 1998, Vol. 5, No 3, pp. 227-239.
15. Molinard A., Vansant E.E., Adsorption, 1995, Vol. 1, No 1, pp. 49-59.
16. Zhu H.Y., Vansant E.F., J. of Porous Materials, 1995, Vol. 2, No 1, pp. 107-113.
17. de Carvalho M. B., Pires J., Carvalho A.P., Microporous Materials, 1996, Vol. 6, No 2, pp. 65-77.
18. Finevich V.P., Rossiiskii khиimicheskii zhurnal (ZhRKhO im. D.I.Mendeleeva), 2007, Vol. 51, No 4, pp. 69-75.
19. Ivanova E.N., Burmistrova N. N., Alekhina M. B., Dudoladov A.O. et al., Sorbtsionnye i khromatograficheskie protsessy, 2017, Vol. 17, No 4, pp. 657-666.
20. Kon'kova T.V. Alekhina M.B., Rysev A.P., Sadykov T.F. et al., Perspektivnye materialy, 2013, No 2, pp. 58-63.
21. Kel'cev N.V., Osnovy adsorbcionnoj tehniki. M., Himija, 1984. 592 p.
22. Maslova M. D. Vliyanie ionnogo sostava pochvennogo rastvora na izmenenie kolloidno-khimicheskikh svoistv pochv. Dic. kand. biol. nauk. M, RGAU, 184 p.
Published
2018-02-27
How to Cite
Ivanova, E. N., Burmistrova, N. N., Alekhina, M. B., & DudoladovA. О. (2018). Al-pillared montmorillonite clay for selective adsorption of argon from its mixture with oxygen. Sorbtsionnye I Khromatograficheskie Protsessy, 18(1), 93-103. https://doi.org/10.17308/sorpchrom.2018.18/469