Computer simulation of interparticle interactions in the anion exchanger phase at non-exchange sorption of amino acids

  • Eugenia S. Trunaeva postgraduate student, department of analytical chemistry, Voronezh State University, Voronezh. e-mail: evgeniya.tru@bk.ru
  • Oksana N. Khokhlova associate professor, department of analytical chemistry, Voronezh State University, Voronezh, e-mail:okxox@yandex.ru
  • Vladimir Yu. Khokhlov professor, department of analytical chemistry, Voronezh State University, Voronezh, e-mail: vladkh70@mail.ru
Keywords: quantum chemical simulation, glycine, phenylalanine, tryptophane, high basic anion exchanger, non-exchange sorption

Abstract

At theabsence in the sorption system of the main operating force, for example, of Coulomb interaction between the functional group and the counter ion in the ion exchanger, sorption of substances proceeds through of the specific forces of various nature comparable in size. The existence of features in a structure of sorbate can lead to the appearance of various effects strengthening or weakening interactions in system. Such effects should be expected in sorption systems involving amino acids. Existence in each bipolar of amino-acid group defines identity of their fixing in a sorbent and the difference in a structure of the radical will determine features of the sorption of each amino acid.

Intermolecular interactions between glycine, phenylalanine and tryptophane from water solutions anda AV-17-2P anion exchanger (Cl- form) is investigated. The presence in solution of bipolar ions of amino acids and impossibility of their recharge in the sorbent phase to anion with the subsequent fixing about functional groups as a result of Coulomb interaction leads to implementation of non exchange sorption of amino acids. The purpose of work is establishing of interactions acting in system at non exchange sorption of amino acids by the anion exchanger and to reveal of lateral radical’s natureat forming ion-molecular structures in an ion exchanger phase.

Computer modeling of structures and calculation of energies using the Gaussian 03 program implementing the B3LYP hybrid densityfunctional with the 6-31G++(d,p)basis set. Starting fragments of the hydrated amino acids and the anion exchanger placed variously from each other and optimized considered structure with the smallest energyare made.

The main acting forces in the sorbent phase at non exchange sorption of amino acids are an ion - ion and an ion - dipole interactions of the functional group of the sorbent, chlorine counterion, a bipolar ion with each other and water molecules. At complication of the structure of the amino acid’slateral radical in the sorption systems with the mineral counterion of AV-17 (Cl) + АК±, structural characteristics and energy gain are slightly changes

Downloads

Download data is not yet available.

References

1. Zuyi Tao., Ion exchange and solvent extraction, 1995, Vol. 12, pp. 353-380.
2. Selemenev V.F., Khokhlov V.Yu., Bobreshova O.V., Fiziko-khimicheskie osnovy sorbtsionnykh i membrannykh metodov vydeleniya i razdeleniya aminokislot, Voronezh, Izd-vo VGU, 2001, 300 p.
3. Khokhlova O.N., Piskunova E.S., Trunaeva E.S., «Fiziko-khimicheskie osnovy ionoobmennykh i khromatograficheskikh protsessov (IONITY-2011)», sbornik trudov XIII Mezhdunarodnoi konferentsii, Voronezh, 2011, pp. 162-164.
4. Khokhlova O.N., Raspopina N.G., Sorbtsionnye i khromatograficheskie protsessy, 2001, Vol. 1, No 6, pp. 957-967.
5. Khokhlova O.N., Vestnik VGU. Seriya: Khimiya. Biologiya. Farmatsiya, 2015, No 2, pp. 42-45.
6. FrischM.J.,TrucksG.W., SchlegelH.B., ScuseriaG.E., RobM.A., CheesemanJ.R., MontgomeryJr. J.A., VtevenT., KudinK.N., BurantJ.C., MillamJ.M., IyengarS.S., TomasiJ., BaroneV., MennucciB., CossiM., ScalmaniG., RegaN., PeterssonG.A., NakatsujiH., HadaM., EharaM., ToyotaK., FukudaR., HasegawaJ., IshidaM., NakajimaT., HondaY., KitaoO., NakaiH., KleneM., LiX., KnoxJ.E., HratchianH.P., CrossL.B., BakkenV., AdamoC., JaramilloJ., GompertsR., StratmannR.E., YazyevO., AustinA.J., CammiR., PomelliC., OchterskiJ.W., AyalaP.Y., MorokumaK., VothG.A., SalvadorP., DannenbergJ.J., ZakrzewskiV.G., DapprichS., DanielsA.D., StrainM.C., FarkasO., MalickD.K., RabuckA.D., RaghavachariK., ForesmanJ.B., OrtizJ.V., CuiQ., BaboulA.G., CliffordS., CioslowskiJ., StefanovB.B., LiuG., LiashenkoA., PiskorzP., KomaromiI., MartinR.L., FoxD.J., KeithT., Al-LahamM.A., PengC.Y., NanayakkaraA., ChallacombeM., GillP.M.W., JohnsonB., ChenW, WongM.W., GonzalezC., PopleJ.A. Gaussian 03, revisionC.02. PittsburghPA: Gaussian, Inc., Wallingford, CT, 2003.
7. Ionity. Katalog, Cherkassy, NIITEKhim, 1980, 32 p.
8. Grebenyuk V.D., Mazo A.A. Obessolivanie vody ionitami, M., Khimiya, 1980, 256 p.
9. Ionity v khimicheskoi tekhnologii, Red. B.N. Nikol'skii, P.G. Romankov, L., Khimiya, 1982, 416 p.
10. Zelenkovskii V.M., Bez"yazychnaya T.V., Soldatov V.S., Doklady Natsional'noi akademii nauk Belarusi, 2003, Vol. 47, No 6, pp. 44.
11. Mironenko N.V., Brezhneva T.A., Butyrskaya E.V., Selemenev V.F., Zhurnal obshchei khimii, 2012, Vol. 82, No 9, pp. 1505-1510.
12. Kozaderova O.A., Membrany, 2008, Vol. 37, No 1, pp. 3.
13. Lantsuzskaya E.V., Oros G.Yu., Krisilov A.V., Selemenev V.F., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 4, pp. 635-641.
14. Butyrskaya E.V., Nechaeva L.S., Shaposhnik V.A., Drozdova E.I., Sorbtsionnye i khromatograficheskie protsessy, 2012, Vol. 12, No 4, pp. 501-512.
15. Vysotsky Yu.B., Fomina E.S., Belyaeva E.A., Aksenenko E.V., J. Phys. Chem., 2011, Vol. 115 (10), pp. 2264-2281.
16. Kereselidze J., Kvaraia V., Mikuchadze G., Computational Molecular Bioscience, 2014, No 4, pp. 35.
17. Trunaeva E.S., Khokhlova O.N., Khokhlov V.Yu., Zhurnal strukturnoi khimii, 2015, Vol. 56, No 6, pp. 1111-1115.
18. Rajabi Khadijeh, Fridgen Travis D., J. Phys. Chem, 2008, Vol. 112 (1), pp. 23-30.
19. Tinoko I., Zauer K., Veng Dzh., Paglisi Dzh., Fizicheskaya khimiya. Printsipy i primenenie v biologicheskikh naukakh, M., Tekhnosfera, 2005, 744 p.
20. Selemenev V.F., Chikanov V.N., Frelikh P., Zhurnal fizicheskoi khimii, 1990, Vol. 64, No 12, pp. 3330-3337.
21. Uglyanskaya V.A., Chikin G.A., Selemenev V.F., Infrakrasnaya spektroskopiya ionoobmennykh materialov, Voronezh, Izd-vo VGU, 1989, 208 p.
22. Nechaeva L.S., Butyrskaya E.V., Shaposhnik V.A, Selemenev V.F., Strukturnyianalizkationoobmennikov, Voronezh, Izdatel'sko-poligraficheskiitsentr «Nauchnayakniga». 2012, 163 p.
Published
2018-04-09
How to Cite
Trunaeva, E. S., Khokhlova, O. N., & Khokhlov, V. Y. (2018). Computer simulation of interparticle interactions in the anion exchanger phase at non-exchange sorption of amino acids. Sorbtsionnye I Khromatograficheskie Protsessy, 18(2), 142-149. https://doi.org/10.17308/sorpchrom.2018.18/493