Quantum chemical modeling of molecule structure of iminodiacetic acid in aqueous medium

  • Boris М. Darinskii doctor of physical and mathematical sciences, professor of the department of Material Science and Industry of Nanosystems, chemical faculty, Voronezh State University, Voronezh, e-mail: darinskii@mail.ru
  • Ruslan V. Petrushenko student of the department of Material Science and Industry of Nanosystems, chemical faculty, Voronezh State University, Voronezh
  • Vladimir F. Selemenev doctor of chemical sciences, professor, head of the department of Analytical Chemistry, chemical faculty, Voronezh State University, Voronezh
Keywords: iminodiacetic acid, covalent bond, zwitter-structure, aqueous medium

Abstract

In the present work the problem of computer modeling of atomic and electronic structure of molecule of iminodiacetic acid in vacuum and aqueous media solved. Relevance of this research direction is caused by use of this substance as initial product for synthesis of wide range of complexes and complexonat having different function and to creation of the modified surfaces of inorganic materials. The molecule of IDA is considered as tridentate complexon in which complexing ion is nitrogen anion, and electronical ligands hydrogen atom and two functional groups of CH2COOH.

Calculations of structures, energy and electronic wave functions were carried out by means of the Gaussian 09 and GaussView programs. As calculation method B3LYP in basis 6-311G has been used (d, p). Choice of calculation method of B3LYP/6-311G (d, p) is caused by the best consent of the experimental and calculated power characteristics of complexes of metals with organic ligands.

One of results is equilibrium and metastable configurations of molecule of IDA in vacuum. Accounting of water environment as dielectric environment has not led to change of configuration of molecule with the greatest binding energy. (in some percent) lengths of valent bonds, valence dihedral angles have undergone some changes. More considerable changes are found for effective charges. All charges have been increased on the module that has been explained to the induced polarization of the environment.

Accession of one water molecule leads to displacement of hydrogen ion from oxygen ion to nitrogen ion and to formation of zwitter-structure of the received hydrate. It is shown, accession of water molecule to molecule of iminodiacetic acid is followed by emergence of three-center covalent bond that is the physical – chemical mechanism of thermodynamic stability of zwitter-structure of iminodiacetic acid molecule in aqueous medium.

Downloads

Download data is not yet available.

References

1. Schwarzenbach G. Flashka H. Die komplexometrische Titration. Stuttgart, 1965, 360 p.
2. Inczedy J. Analitical applications of complex equilibria. Budapest, 1976, 376 p.
3. Arkhipova O.G., Zorina L.A., Sorokina N.S. Kompleksony v klinike professional'nykh boleznei. M., Meditsina Publ., 1975, 160 p.
4. Semenov D.I., Tregubenko I.P. Kompleksony v biologii i meditsine. Sverdlovsk, USC AS USSR, 1984, 280 p.
5. Kel'tsieva O.A., Gladilovich V.D., Podol'skaya E.P., Nauchnoe priborostroenie, 2013, Vol. 23, No 1, pp. 74-85.
6. Dyatlova N.M., Lastovskii R.P., Uspekhi khimii, 1965, Vol. 34, No 7, pp. 1153-1184.
7. Hartley F. R. Supported metal complexes. A new generation of catalysts. Dordrecht etc, D. Reidel Publishing, 1985, 360 p.
8. Tertykh V.A., Belyakova L.A. Khimicheskie reaktsii s uchastiem poverkhnosti kremnezema. Kiev, Naukova dumka, 1991, 262 p.
9. Kondo K., Sumi H., Matsumo M., Separation Science and Technology, 1996, Vol. 31, No 12, pp. 1771-1775.
10. Fortes M.C.B, Martins A.H., Benedetto J.S., Minerals Engineering, 2003, No 16, pp. 659-663.
11. Liu D., Cant N.W., Smith A.J., Wainwright M.S., Appl. Catalysis A: General, 2006, Vol. 297, pp. 18-23.
12. Tian J., Shi H., Li X., Yin Y., Chen L., Green Chemistry, 2012, Vol. 14, pp. 1990-2000.
13. Feng L., Chen J., Ren B., Agrochemistry, 2006, Vol. 45, pp. 12-14.
14. Lisichkin G.V. Modifitsirovannye kremnezemy v sorbtsii, katalize i khromatografii. Moskow, Khimiya Publ., 1986, 248 p.
15. Lisichkin G.V., Sorovskii obrazovatel'nyi zhurnal, 1996, No 4, pp.53-59.
16. Helvetica chimica acta. 1945. Vol. 28. No 1. pp. 828-840.
17. Schwarzenbach G., Biedermann W., Helvetica chimica acta, 1948. Vol. 31. No 2. pp. 331-340.
18. Biedermann W., Schwarzenbach G., Chimia, 1948, No 2, pp 56-58.
19. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York etc, A Wiley Interscience Publication, 1986, 536 p.
20. Dyatlova N.M., Temkina V.Ya., Popov K.I. Kompleksony i kompleksonaty metallov. Moskow, Khimiya Publ., 1988, 544 p.
21. Shkol'nikova L.M., Parai-Koshits M.A., Dyatlova N.M., Problemy kristallokhimii, M., 1986, pp. 32-87.
22. Antony J., Hansen B., Hemmingsen L., Bauer R., J. Phys. Chem. A, 2000, Vol. 104, pp. 6047-6055.
23. Semenov A.M., X Mezhdunarodnaya konferentsiya molodykh uchenykh po khimii «Mendeleev-2017», April 4-7, 2017, St.Peterburg, 2017, p.385
Published
2018-04-09
How to Cite
DarinskiiB. М., Petrushenko, R. V., & Selemenev, V. F. (2018). Quantum chemical modeling of molecule structure of iminodiacetic acid in aqueous medium. Sorbtsionnye I Khromatograficheskie Protsessy, 18(2), 203-214. https://doi.org/10.17308/sorpchrom.2018.18/501

Most read articles by the same author(s)