Affine interactions on the surface of a piezoelectric sensor modified by carbon nanotubes in the determination of fluoroquinolones

  • Evgenia I. Shukshina postgraduate student, department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: shukshina_evg@mail.ru
  • Olga V. Farafonova associate prof., Ph.D. (chemistry), department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: farafonova.ov@mail.ru
  • Il'ja А. Shanin postgraduate student, department of chemical enzymology, M.V. Lomonosov Moscow State University, e-mail: numenor-08@mail.ru
  • Svetlana S. Grazhulene chief researcher, grand Ph.D (chemistry), Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Chernigolovka, e-mail: grazhule@impt-hpm.ac.ru
  • Sergei А. Eremin prof., grand Ph.D (chemistry), M.V. Lomonosov Moscow State University, e-mail: saeremin@gmail.com
  • Tatyana N. Ermolaeva prof., grand Ph.D (chemistry), department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: etn@stu.lipetsk.ru
Keywords: affinity interactions, piezoelectric immunosensor, multi-walled carbon nanotubes, competitive immunoassay format, direct immunoassay format, levofloxacin, ciprofloxacin.

Abstract

Affine interactions on the surface of a piezoelectric immunosensor modified with carbon nanotubes were studied in the determination of ciprofloxacin and levofloxacin in direct and competitive assay formats. An increase in the specific surface of the sensor was shown when multi-walled carbon nanotubes are used due to the appearance of a 3D boundary layer with high porosity, which is confirmed by the growth of the mass of the recognition layer and the concentration sensitivity. Optimal concentrations of the hapten protein conjugate (0.5 μl/cm3) and antibodies to fluoroquinolones were determined in the direct assay (dilution of antibodies 14/86 and 10/90 for levofloxacin and ciprofloxacin) in competitive assay formats (15/85 for levofloxacin and 18 / 82 for ciprofloxacin). Operational characteristics are substantiated: the contact time of the sensor with the analyzed sample (20 min), the flow rate of the carrier solution (30 μl / min and 50 μl / min), depending on the method of creating the recognition layer. Methods for the determination of fluoroquinolones in flow-injection and static regimes were developed. Was shown that the use of CNTs helps to expand the range of detectable fluoroquinolones content in competitive 10-350 and 10-370 ng /cm3 and direct analysis formats of 30-650 and 25-670 ng/cm3 for levofloxacin and ciprofloxacin, respectively. The correctness of the determination of fluoroquinolones was evaluated by the "added-found" method. The values of the relative standard deviation sr indicate a high reproducibility of the measurement results (sr does not exceed 0.08). The methods were tested in the analysis of levofloxacin and ciprofloxacin in milk.

Downloads

Download data is not yet available.

References

1. Hu Yu, Hui Mun, Ying-Mei Hu, J. of Pharmaceutical Analysis, 2012, Vol. 2, pp. 76-81; doi: 10.1016/j.jpha.2011.09.007.
2. Takeda N., Gotoh M., Matsuoka T., Food Additives and Contaminants, 2011, Vol. 28, No 9, pp. 1168-1174; doi: 10.1080/19440049
.2011.587028.
3. Patyra E., Kwiatek K., Analytical Letters, 2017, Vol. 50, pp. 1711-1720; doi: 10.1080/00032719.2016.1249876.
4. Rodríguez-Díaz R.C., Fernández-Romero J.M., Aguilar-Caballos M.P., Gómez-Hens A., J. Agric. Food Chem., 2006, Vol. 54, pp. 9670-9676; doi: 10.1021/jf0621368.
5. Pearce J.N., Burns B.G., Riet J.M., Casey M.D. et al., Food Additives and Contaminants, 2009, Vol. 26, pp. 39-46; doi: 10.1080/02652030802189757.
6. Shanin I.A., Shaimardanov A.R., Eremin S.A., Thai N.T.D., Zhurnal analiticheskoj himii, 2015, Vol. 70, No 6, pp. 617-623.
7. Shanin I.A., Thai N.T.D., Eremin S.A., Vestnik Moskovskogo Universiteta, 2014, No 3, pp. 180-186.
8. Chen J., Shanin I.A., Lv S., Wang Q., Mao C. et al., J. of the Science of Food and Agriculture, 2015, Vol. 93, pp. 1341-1346; doi: 10.1002/jsfa.7228.
9. Taranova N.A., Zvereva E.A., Zherdev A.V., Dzantiev B.B. et al., Biomedical and Pharmacology Journal, 2015, Vol. 8, No 2, pp. 1389-1398; doi: 10.13005/bpj/899.
10. Jiahong C., Shanin I.A., Shuwei L., Qiang W. et al., J. of the Science of Food and Agriculture, 2016, Vol. 96, No 4, pp. 1341-1346; doi: 10.1002/jsfa.7228.
11. Tsekenis G., Garifallou G.Z., Davis F., Millner P.A. et al., Anal. Chem., 2008, Vol. 80, pp. 9233-9239; doi: 10.1021/ac8014752.
12. Pinachoa D.-G., Gorgy K., Cosnier S., Marco M.-P. et al., IRBM, 2008, Vol. 29, pp.181-186; doi: 10.1016/j.rbmret.2007.11.006.
13. Giroud F., Gorgy K., Gondran C., Cosnier S. et al., Anal. Chem., 2009, Vol. 81, pp. 8405-8409; doi: 10.1021/ac901290m.
14. Karaseva N.A., Ermolaeva T.N., Talanta, 2012, Vol. 93, pp. 44-48; doi: 10.1016/j.talanta.2011.12.047.
15. Melikhova E.V., Kalmykova E.N., Ermolaeva T.N., Eremin S.A., J. of Analytical Chemistry, 2006, Vol. 61, No 7, pp. 687-693.
16. Farafonova O.V., Shukshina E.I., Grazhulene S.S., Ermolaeva T.N., Sorbtsionnye i khromatograficheskie protsessy, 2017, Vol.17, No 4, pp. 548-356.
17. Shashkanova O.Yu., Ermolaeva T.N., Zavodskaja laboratorija. Diagnostika materialov, 2010, No 3, pp. 37-41.
18. Grazhulene S.S., Red'kin A.N., Telegin G.F., Zhurnal analiticheskoj himii, 2012, Vol. 67, No 5, pp. 479-484.
19. Ermolaeva T.N., Dergunova E.S., Kalmykova E.N. Eremin S.A., Zhurnal analiticheskoj himii, 2006, Vol. 61, No 6, pp. 660-665.
20. Ermolaeva T.N., Kalmykova E.N., Shashkanova O.Ju., Rossijskij himicheskij zhurnal, Vol. 52, No 2, pp. 17-29.
Published
2018-05-31
How to Cite
Shukshina, E. I., Farafonova, O. V., ShaninI. А., Grazhulene, S. S., EreminS. А., & Ermolaeva, T. N. (2018). Affine interactions on the surface of a piezoelectric sensor modified by carbon nanotubes in the determination of fluoroquinolones. Sorbtsionnye I Khromatograficheskie Protsessy, 18(3), 394-403. https://doi.org/10.17308/sorpchrom.2018.18/544