Composition, structure and selective sorption of cesium ions by aluminosilicate sorbent derived from potassium industry waste of JSC «Belaruskali»

  • Tat'yana G. Leont'yeva Senior Researcher Remediation Techno Polluted Territories of the Laboratory. State Scientific Institution “Joint Institute for Power and Nuclear Research – Sos-ny” of the National Academy of Sciences of Be-larus, Minsk, Republic of Belarus, e-mail: t.leontieva@tut.by
  • Leonid N. Moskal'chuk Dr. of Technical Sciences, Professor of the Department of Physi-co-chemical methods of products certification, Belarusian State Technological University, Minsk, Republic of Belarus, E-mail: leon-mosk@tut.by
  • Anatoliy A. Baklay Senior Researcher Re-mediation Polluted Territories of the Laboratory. State Scientific Institution “Joint Institute for Power and Nuclear Research – Sosny” of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus, E-mail: a.baklay@tut.by
  • Natal'ja A. Makovskaya PhD (biology), Head of the Laboratory Remediation Polluted Territories. State Scientific Institution “Joint Institute for Power and Nuclear Research – Sos-ny” of the National Academy of Sciences of Be-larus, Minsk, Republic of Belarus, E-mail: fera-pontova@tut.by
Keywords: clay-salt slimes, structure, aluminosilicate sorbents, sorption, cesium, dispersion, iso-therm, distribution coefficient.

Abstract

Environmental problems related to the contamination of aquatic environments by radionuclides re-main valid even today due to a number of accidents at nuclear power plants. In modern technologies for cleaning aqueous media based on sorption processes, natural clays of various compositions are widely used because of their availability and low cost. Natural clays, depending on the type and content of layered clay minerals in their composition, differ very greatly in their sorption properties with respect to radionuclides. The aim of this work is to investigate the selective sorption of Cs+ with an aluminosilicate sorbent (AS) ob-tained by acid-water treatment of clay-salt slimes (CSS) sample which are large-tonnage waste of the potas-sium production of JSC “Belaruskali” (Soligorsk, Belarus). The main mineral phases in the CSS are illite (50 wt. %) and dolomite (20 wt. %). It is known that illite with compacted layers and extended zones at their ends is characterized by high selective properties towards to cesium. The acid-water treatment of the CSS sample results in an increase in the number of highly selective sorption sites in the sorbent, and mainly due to an increase in illite content, since this clay mineral determines the selective sorption of cesium trace amounts in the edge wedge-shaped region of inter-pack spaces. The AS sample was studied by the following modern methods: X-ray diffraction, X-ray spectral microanalysis, dispersed analysis, and transmission electron mi

croscopy. It is pointed out that in comparison with the initial CSS samples in the AS samples the values of the following indicators have increased: the content of illite is 1.3 times, the specific surface is 2.4 times and the values of selective sorption towards to cesium is 2.1 times.

The content of particles with a size of less than 10 microns, which is 87.3 wt. %, the sample AS re-fers to a highly disperse group of clay materials, and by mineral composition – to the hydromicaceous group (the content of illite is 65.2 wt. %). The sorption of cesium ions on AS sample with a specific surface area of 66±4 m2/g at Cs+ ion concentration in a solution of less than 2•104 mol/dm3 is described by the Langmuir model.

The calculated values of cesium distribution coefficients for the two types of sorption centers of the AS sample are 8.3•10 and 8.1•10 dm3/kg, and the values of selective sorption of cesium are 0.4 and 14.6 mmol/kg. A promising application of aluminosilicate sorbent based on CSS is purification of natural water from 137Cs, rehabilitation of radioactively contaminated territories.

Downloads

Download data is not yet available.

References

1. Miljutin V.V., Nekrasova N.A., Haritonov O.V., Firsova L.A. et al., Sorbtsionnye i khro-matograficheskie protsessy, 2016, Vol. 16, No 3, pp. 313-322.
2. Mulyutin V.V., Gelis V.M., Nekrasova N.A., Kononenko O.A. et al., Radiochemistry, 2012, Vol. 54, No 1, pp. 75-78. DOI: 10.1134/S1066362212010110.
3. Tarasevich Yu.I. Prirodnye sorbenty v pro-cessah ochistki vody. Kiev, Nauk. Dumka, 1981, 206 p.
4. Rjabchikov B.E. Ochistka zhidkih radioak-tivnyh othodov. Moscow, DeLi print, 2008, 516 p.
5. Mjasoedova G.V., Nikashina V.A., Ros. him. zh., 2006, Vol. 50, No 5, pp. 55-63.
6. Miljutin V.V., Vezencev A.I., Sokolovskij P.V., Nekrasova N.A., Sorbtsionnye i khroma-tograficheskie protsessy, 2014, Vol. 14(5), pp. 879-883.
7. Voronina A.V., Blinova M.O., Semenischev V.S., Gupta D.K., J. Environ. Radioact., 2015, Vol. 144, pp. 103-112. DOI: 10.1016/j.jenvrad.2015.03.012.
8. Konopleva I.V., Sorbtsionnye i khromato-graficheskie protsessy, 2016, Vol. 16, No 4, pp. 446-456.
9. Sawhney B.L., Clay and Clay Miner., 1972, Vol. 20, рp. 93-100.
10. Osipov V.I., Sokolov V.N. Gliny i ih svojstva. Sostav, stroenie i formirovanie svojstv. M., GEOS, 2013, 576 p.
11. Prjadko A.V., Zharkova V.O., Ershova Ja.Ju., Tjupina E.A. et al., Uspehi v himii i himi-cheskoj tehnologii, 2017, Vol. 31, No 10, pp. 19-21.
12. Moskal'chuk L.N., Baklaj A.A., Leont'eva T.G., Strelenko D.K., Trudy BGTU, 2015, No 3(167), pp. 70–77.
13. Jeong, C.H., Kim, C.S., Kim, S.J., Park, S.W., J. Environ. Sci. Health., Part A., 1996, Vol. 31(9), pp. 2173-2192. DOI: 10.1080/10934529609376485.
14. Sanzharova N.I., Sysoeva A.A., Isamov N.N., Aleksahin R.M., Kuznecov V.K., Zhiga-reva T.L., Ros. him. zh., 2005, Vol. 49, No 3, pp. 26-34.
15. Sokolova T.A., Dronova T.Ja., Tolpeshta I.I. Glinistye mineraly v pochvah. Tula, Grif i K, 2005, 336 p.
16. Ishidera T., Kurosawa S., Hayashi M., Uchikoshi K., Beppu H., Clay Miner., 2016, Vol. 51(2), pp. 161-172. DOI:10.1180/claymin.2016.051.2.04.
17. Benedicto A., Missana T., Fernandez A.M., Environ. Sci. Technol., 2014, Vol. 48, pp. 4909-4915. DOI: 10.1021/es5003346.
18. Durrant C.B., Begg J.D., Kersting A.B., Zavarin M., Sci. Total Environ., 2018, Vol. 610-611, pp. 511-520. DOI: 10.1016/j.scitotenv.2017.08.122.
19. Korol'kova S.V. Avtoref. kand. tehn. nauk. Belgorod, 2012, 18 p.
20. Voronina A.V., Kulyaeva I.O., Gupta D.K., Radiochemistry, 2018, Vol. 60, No 1, pp. 35-41. DOI: 10.1134/S106636221801006X.
21. Nakanishi T.B., Proc. Jpn. Acad., Ser. B 94, 2018, Vol. 94(1), pp. 20-34. DOI: 10.2183/pjab.94.002.
22. Leont'eva T.G., Baklaj A.A., Moskal'chuk L.N., Trudy BGTU, 2016, No. 3, pp. 74-80.
23. Cremers A., Elsen A., De Preter P, Maes A., Nature, 1988, Vol. 335, No 6187, pp. 247-249. DOI: 10.1038/335247a0.
24. Okumura M., Kerisit S., Bourg I.C., Lam-mers L.N. et al., J. Environ. Radioact., 2018, Vol. 189, pp. 135-145. DOI: 10.1016/j.jenvrad.2018.03.011.
25. Brouwer E., Baeyens B., Maes A., Cre-mers A., J. Phus. Chem., 1983, Vol. 87, рp. 1213-1219.
26. Wauters J., Elsen A., Cremers A., Konop-lev A.V. et al., Geochem., 1996, Vol. 11, pp. 589-594.
27. GOST 9169-75. Syr'e glinistoe dlja kera-micheskoj promyshlennosti. Klassifikacija. M.: Izd-vo standartov, 1975, Vved. 01.06.1976, 8 p.
Published
2018-10-12
How to Cite
Leont’yeva, T. G., Moskal’chuk, L. N., Baklay, A. A., & Makovskaya, N. A. (2018). Composition, structure and selective sorption of cesium ions by aluminosilicate sorbent derived from potassium industry waste of JSC «Belaruskali». Sorbtsionnye I Khromatograficheskie Protsessy, 18(5), 726-735. https://doi.org/10.17308/sorpchrom.2018.18/599