Changes of physicochemical and transport characteristics of ion exchange membranes in the process of operation under demineralization of wastewater production of nitrogen-containing mineral fertilizers
Abstract
Physicochemical and transport characteristics of heterogeneous cation-exchange (Ralex CM (H)- Pes) and anion-exchange (Ralex AM (H)-Pes) membranes differing in time of using in an industrial electro- dialysis vessel under desalting and concentration of waste ammonium and nitrate-containing water (condi- tioned membranes, membranes after one and six years of use) were investigated. The strength characteristics of the test samples were measured by the RMI-60 discontinuous machine, the density of ion-exchange mem- branes was determined by the pycnometric method. The estimation of the conducting properties of mem- branes was carried out by the contact-difference method for solutions of ammonium nitrate in the concentra- tion range 0.01-0.3 mol/dm3 at 1 kHz frequency of an alternating current. The diffusion permeability of the investigated ion-exchange membranes was measured in a flow cell for a sodium chloride / membrane / water system. An analysis of the obtained results showed that partial destruction of the heterogeneous ion-exchange membranes is observed at their prolonged use in the electrodialysis apparatus, and such destruction leads to an increase in the diffusion permeability and electrical conductivity, however at the same time their total ex-change capacity decreases. In the electrodialysis of a solution of ammonium nitrate with the concentration of 0.01 mol/dm3, the fluxes through the anion exchange membrane are much less than fluxes through the cation exchange membrane, since insoluble precipitation forms in the anion exchange membrane. Electrodialysis with a current density exceeding the limiting value is accompanied by irreversible dissociation of water mo- lecules at the interface with the solution, and the ion-exchange membrane starts to be freed from precipita- tion, as a result of which its electrochemical regeneration takes place. The obtained results testify to insignifi- cant deterioration of operational characteristics of ion-exchange membranes in the course of electrodialysis, which proves the prospects of its use for purification of waste nitrogen-containing water produced during the production of mineral fertilizers.
Downloads
References
2. Vasil’eva V.I., Akberova E.M., Shaposhnik V.A., Malykhin M.D., Russ. J. Electrochem., 2014, Vol. 50, No 8, pp. 789-797. DOI:10.1134/S102319351408014X
3. Vasil’eva V.I., Pismenskaya N.D., Akbero- va E.M., Nebavskaya K.A., Russ. J. Phys. Chem., 2014, Vol. 88, No 8, pp. 1293-1299. DOI:10.1134/ S0036024414080317
4. Vasil'eva V.I., Akberova E.M., Ckhaj A.A., Malyhin M.D., «Membrany-2013», Proceedings of the All-Russian scientific conference (with international participation), October 1-4, 2013, Vladimir, 2013, pp. 348-349.
5. Sata T., Tsujimoto M., Yamaguchi T., Matsusaki K., J. Membr. Sci., 1996, Vol. 112, pp. 161-170. DOI:10.1016/0376- 7388(95)00292-8
6. Dammak L., Larchet C., Grande D., Separation and Purification Technology, 2009, Vol. 69, No 1, pp. 43-47.
DOI:10.1016/j.seppur.2009.06.016
7. Yacev A.M., Akberova E.M., Vasil'eva V.I., Malyhin M.D. «Physical and chemical basis of ion-exchange and chromatographic processes - IONITS-2017», materials of the XV International Scientific and Practical Confe- rence dedicated to the 115th anniversary of the discovery of chromatography and the 100th an- niversary of the Voronezh State University, September 13-17, 2017, Voronezh, 2017, pp. 63-65.
8. Ghalloussi R., Garcia-Vasquez W., Bellak- hal N., Larchet C. et al., Separation and Purifi- cation Technology, 2011, Vol. 80, pp. 270-275. DOI: 10.1016/j.seppur.2011.05.005
9. Ghalloussi R., Chaabane L., Dammak L., Grande D., Desalination and Water Treatment, 2015, Vol. 56, pp. 2561-2566. DOI:10.1080/19443994.2014.968908
10. Medyanceva D.G., SHishkina S.V., Vest- nik NTU "HPI": Hіmіya, hіmіchna tekhnologіya ta ekologіya, 2008, No 16, pp. 80-84.
11. Niftaliev S.I., Kozaderova O.A., Kim K.B., Journal of Electroanalytical Chemistry, 2017, Vol. 794, pp. 58-63. http://dx.doi.org/10.1016/j.jelechem.2017.03.04 6
12. Vajsman YA.I., Rudakova L.V., Kalinina E.V. Patent RF, No 2322399, 2008.
13. Ciklar-SHtul'c Abvassertekhnik GMBH. Patent RF, no 2477709, 2013.
14. Harlampovich G.D., Kudryashov R.I., Be- zothodnye tekhnologicheskie processy v himi- cheskoj promyshlennosti. M., Himiya, 1978, 277 p.
15. Fassbender A.G. Patent RF, No 2104951, 1998.
16. Timonin A.S. Inzhenerno-ehkologicheskij spravochnik: v 3t. Kaluga, Izdatel'stvo N.Bochkarevoj, 2003, 2t, 884 p.
17. OAO «Minudobreniya». Postoyannyj tekhnologicheskij reglament proizvodstva cekha NOPSV ustanovki ochistki azotosoderzhashchih stochnyh vod. Rossosh', 2013, 123 p.
18. GOST 17552-72-1972. Membrany io- noobmennye. Metody opredeleniya polnoj i ravnovesnoj obmennoj emkosti. M., Izd-vo standartov, 1972, 10 p.
19. Berezina N.P., Kononenko N.A., Dvorkina G.A. et al., Fiziko-himicheskie svojstva ionoobmennyh materialov, Krasnodar, Izd-vo Kuban. gos. un-ta, 1999, 82 p.
20. GOST 270-75. Rezina. Metod opredeleniya uprugoprochnostnyh svojstv pri
rastyazhenii. Moskva, IPK Izdatel'stvo standartov, 2000, 11 p.
21. Shaposhnik V.A., Emel'yanov D.E., Drobysheva I.V., Kolloidnyj zhurnal. 1984, Vol. 46, No 4, pp. 820-822.
22. Shutkina E.A., Nevakshenova E.E., Pis'menskaya N.D., Mareev S.A. et al., Kondensirovannye sredy i mezhfaznye granicy, 2015, Vol. 17, No 4, pp. 566-578.
23. NH4+ - selektivnyj ehlektrod serii «Vol'ta». Pasport i rukovodstvo po ehkspluatacii, Sankt- Peterburg, 2011, 6 p.
24. NO3- - selektivnyj ehlektrod serii
«Vol'ta». Pasport i rukovodstvo po ehkspluatacii, Sankt-Peterburg.2011, 6 p.
25. Zabolockij V. I., Nikonenko V.V. Perenos ionov v membranah. Moscow, Nauka, 1996, 390 p.
26. RD 34.37.105-89. Glavtekhupravlenie. Metodicheskie ukazaniya po proektirovaniyu ehlektrodializnyh ustanovok dlya obessoliva- niya vody na teplovyh ehlektrostanciyah. M., 1990, 22 p.