Sorption characteristics of sorbents for solid-phase extraction of phenolic compounds from extracts of medicinal plants

  • Elena A. Shil’ko Ph. D. student of the Department of Analytical Chemistry, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar. e-mail: elenashilko94@gmail.com
  • Zaual A. Temerdashev doctor of chemical sciences, professor and the Head Department of Analytical Chemistry, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar. e-mail: temza@kubsu.ru
  • Victoria V. Milevskaya Ph.D. in Chemistry, Art. Lecturer Department of Analytical Chemistry, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar. e-mail: milevskaya_ victoriya@mail.ru
  • Natalia V. Kiseleva Ph.D. in Chemistry, Associate Professor Department of Analytical Chemistry, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar. e-mail: lab284b@mail.ru
Keywords: solid phase extraction, sorption, desorption, phenolic acids, flavonoids, medicinal raw material, HPLC-DAD, Strata C18-E, Strata X, Oasis HLB.

Abstract

      Extraction of different compounds from plant materials and their concentration is an actual task, which is solved by introducing a solid phase extraction (SFE) stage into the analytical cycle. Currently, there is a large variety of sorbents that allow extracting a wide range of compounds from various matrixes, for instance, biologically active components from aqueous and aqueous-alcoholic extracts of medicinal raw material.
It is possible to assess the possibility and expediency of applying any sorption material for SPE of target groups of compounds by obtaining and further comparing their sorption characteristics. Based on this, the goal of our work was to obtain and study the main sorption characteristics of a number of concentrating sorbents of various chemical structures for the SPE of phytocomponents from medicinal plant extracts. As sorption
materials, we used sorbents based on octadecylsilicagel (Strata C18-E), styrene and divinylbenzene co polymer, chemically modified N-vinylpyrrolidone, (Strata X), and also divinylbenzene and Nvinylpyrrolidone copolymer (Oasis HLB).
       For experiment we obtained water extracts of Hypericum, which were acidified with 1% HCl solution to pH=2 to obtain the output dynamic sorption curves. At this step extracts were passed through cartridges at a rate of 1 cm3/min, taking the corresponding fractions into vials. Next, the sorbent was dried in a stream of nitrogen and the desorption curves of the phenolic components were obtained. The content of the
target compounds in the eluates was controlled by HPLC-DAD system.
      The main sorption characteristics were obtained for all target compounds («the breakthrough volume », the equilibrium volume, the retention volume, etc.), as well as the desorption parameters (concentration ratio and percentage of recovery). «The breakthrough volumes» of phenolic acids using the Strata X and Oasis HLB sorbents were 5 and 9 cm3, respectively, in contrast to the Strata C18-E sorbent («the breakthrough
volumes» were not more than 0.5 cm3). For SPE of flavonoids on polymer materials, «the breakthrough volumes» increase several times as compared with the Strata C18 sorbent (not more than 1 cm3) and reaches 6 and 19 cm3 for Strata X and Oasis HLB, respectively. The Strata C18-E recoveries of phenolic acids and flavonoids were 27-40% and 79-105% respectively when the concentration ratio was 5. Applying the Strata X sorbent, the concentration is also achieved 5 times with recoveries of 106-107% (for phenolic acids) and 99-122% (for flavonoids). Applying the Oasis HLB sorbent, it is possible to concentrate phenolic acids by 20 times with their recoveries of 74-96% and flavonoids by 32 times with recoveries in the range of 56-91%.
        Thus, it was shown that sorbents based on octadecylsilagel are rather effective for extracting a group of flavonoids and their glycosides, and polymeric materials are both flavonoids and phenolic acids at the same time, moreover the maximum concentration coefficients were observed applying the Oasis HLB.

Downloads

Download data is not yet available.

References

1. Zgоrka G., Hajnos A., Chromatographia., 2003, Vol. 57, No 1, рp. 77-80. doi: 10.1007/BF02492087
2. Kozyra M., Glowniak K., Acta Soc. Bot. Pol., 2013, Vol. 82, No 4, рр. 325-329. doi: 10.5586/asbp.2013.039
3. Zeng H., Liu Z., Zhao S., Shu Y. et al., J. Sep. Sci., 2016, Vol. 39, No 19, рp. 3806-3817. doi: 10.1002/jssc.201600547
4. Glowniak K., Zgоrka G., Kozyra M., J. Chromatogr. A., 1996, Vol. 730, рp. 25-29. doi: 10.1016/0021-9673(95)00877-2
5. Oniszczuk A., Podgorski R., Oniszczuk T., Zukiewicz-Sobczak W. et al., Industrial Crops and Products, 2014, Vol. 61, рp. 377-381. doi:
10.1016/j.indcrop.2014.07.036
6. Skrzypczak-Pietraszek E., Pietraszek J., J. Pharm. Biomed. Anal., 2012, Vol. 66, рp. 154-161. doi: 10.1016/j.jpba.2012.03.037
7. Stephen Inbaraj B., Lu H., Kao T.H., Chen B.H., J. Pharm. Biomed. Anal., 2010, Vol. 51, рp. 549-556. doi: 10.1016/j.jpba.2009.09.006
8. Irakli M.N., Samanidou V.F., Biliaderis C.G., Papadoyannis I.N., J. Sep. Sci., 2012, Vol. 35, рp. 1603-1611. doi: 10.1002/jssc.201200140
9. Ziakova A., Brandsteterova E., J. Liq. Chromatogr. Relat. Technol., 2002, Vol. 25, No 19, рp. 3017-3032. doi: 10.1081/JLC-120015888
10. Dvorackova E., Snoblova M., Hrdlicka P., Int. Food Res. J., 2014, Vol. 21, No 4, рp.1495-1500.
11. Koseoglu Yılmaz P., Kolak U., Anal. Lett., 2016, Vol. 49, No 14, рp. 2157-2164. doi: 10.1080/00032719.2016.1145231
12. Zhang Y., Shi P., Qu H., Cheng Y., Rapid Commun. Mass Spectrom., 2007, Vol. 21, рp.971-2984. doi: 10.1002/rcm.3166
13. Zgorka G., Kawka S., J. Pharm. Biomed. Anal., 2001, Vol. 24, рp. 1065-1072.
14. Shutz K., Kammere D., Carle R., Schieber A., J. Agric. Food Chem., 2004, Vol. 52, рp. 4090-4096. doi: 10.1021/jf049625x
15. Koseoglu Yilmaz P., Kolak U., J. Chromatogr. Sci., 2017, Vol. 55, рp. 1-7. doi:10.1093/chromsci/bmx025
16. Bielicka-Daszkiewicz, К., Talanta, 2009, Vol. 80, рp. 614-621. doi:10.1016/j.talanta.2009.07.037
17. Magiera S., Zarеba M., Food Anal. Methods. 2015, Vol. 8, No 10, рp. 2665-2674. doi: 10.1007/s12161-015-0166-y
18. Mothibedi K., Mokgadi J., Torto N., Agilent Technologies., Inc., 2011.
19. Simplified Solid Phase Extraction Solutions. Available at: https://www.phenomenex.com (accessed 28 November 2018).
20. Milevskaya V.V., Statkus M.A., Temerdashev Z. A, Kiseleva N.V. et al., Journal of Analytical Chemistry, 2016, 2016, Vol. 71, No.7,
pp. 741-747. doi: 10.1134/S1061934816070133
21. Shil’ko E.A., Milevskaya V.V., Temerdashev Z. A, Kiseleva N.V., Analitika i kontrol'. 2018, Vol. 22, No 3, pp. 303-314. doi: 10.15826/analitika.2018.22.3.013
22. Ajila C., Brar S., Verma M., Tyagi R. et al., J., Crit. Rev. Biotechnol., 2011, Vol. 31, No 3, рp.227-249. doi: 10.3109/07388551.2010.513677
23. Fontanals N., Marce R., Borrull F., Contributions to science, 2010, Vol. 6, No 2, рp.199-213. doi: 10.2436/20.7010.01.97
24. Buszewski B., Szultka M., Crit. Rev. Anal. Chem., 2012, Vol.42, рp. 198-213. doi:10.1080/07373937.2011.645413
25. Augusto F., Hantao L., Mogollon N., Braga S., Trends Anal. Chem., 2012, Vol. 43, pp. 14-23. doi: 10.1016/j.trac.2012.08.012
26. Qureshi M., Stecher G., Huck C., Bonn G., Cent. Eur. J. Chem., 2011, Vol. 9, No 2, pp. 206-212. doi: 10.2478/s11532-011-0006-x
Published
2019-04-08
How to Cite
Shil’ko, E. A., Temerdashev, Z. A., Milevskaya, V. V., & Kiseleva, N. V. (2019). Sorption characteristics of sorbents for solid-phase extraction of phenolic compounds from extracts of medicinal plants. Sorbtsionnye I Khromatograficheskie Protsessy, 19(2), 157-167. https://doi.org/10.17308/sorpchrom.2019.19/733