Permeable reactive barriers as a way to protect the environment from pollutions. Natural sorbents for solving environmental problems. Mathematical modeling and calculation of processes. Review.
Abstract
To solve large-scale environmental problems in the United States and Europe, a new technology is used - permeable reactive barriers (PRB). The purpose of the review is to estimate according to the literature the advantages and limitations of geochemical barriers, the types of materials used, including combined reactive materials, their properties, mechanisms for removing contaminants from the reaction medium, as
well as practical problems solved using them. It has been shown that clinoptilolite-containing tuffs (CLT), whose significant deposits are located in different regions of the world, including Russia, are considered to be inexpensive, affordable and highly effective natural sorbents. A list of the main deposits of Russia CLT developed and used in various industries and agriculture is presented, and the reserve deposits of CLT are
listed also. The sorption properties of CLT and its structural features that turn this material into a natural nanostructured sorbent with unique properties are considered. The properties of CLT modified in various ways (both organic and inorganic modifiers, including magnetite, giving CLT magnetic properties), which can also be used as permeable geochemical barriers, are also shown. The literature data on the operational
properties of CLT are presented. When developing geochemical barriers, an important point is the economic factor, which is the main rationale for the need of mathematical modeling of sorption processes occurring in geochemical barriers. For many years, the theory of ion exchange dynamics for single-component and multicomponent systems has been developed in the Laboratory of Sorption Methods of GEOKHI RAS with
the participation of members of the Department of Mathematical Physics of the Moscow State University for subsequent modeling and calculation of various practically important ion-exchange processes on various sorbents, including CLT. In this regard, the article describes in more detail the main principles used to develop mathematical models of sorption processes. Based on the existing experience in mathematical
modeling, the sizes of geochemical barriers for specific natural СLT and specific environmental conditions are calculated. The first task is decontamination of natural waters polluted as a result of the accident in Yakutia («Kraton» object) from radioactive Sr2 + and Cs + at the CLT of the Khonguruu deposit. The second task is the decontamination of polluted groundwater in Kazakhstan at the local CLT of the Chankanai
deposit. The results of the calculation of the protective action time of geochemical barriers are given.
Downloads
References
2. USEPA 1998, U.S.Environmental Protection Agency, Vienna, Austria, 101 pp.
3. USEPA, 2002, Field Application on in situ Remediation Technologies, PRB, U.S.Environmental Protection Agency, Washington, DC.
4. Bone B.D., Review of UK guidance on PRB. In: Taipei Inter. Confer. On Remediation of Soil and Groundwater Contaminated Sites, Taipei, Taiwan, 2012, pp. 611-768.
5. Obiri-Nyarko F., Grajales-Mesa S., Malina G., Chemosphera, 2014, Vol. 111, pp. 243-259.
6. Bowman R.S, Sillivan E.I., Li Z., Natural Zeolites for the Third Millenium- C.Colella and F.A.Mumpton, eds., 2000, pp. 287-297.
7. Bowman R.S., Microporous and Mesoporous Materials, 2003, Vol. 61, pp. 43-56.
8. Perego C, Bagatin R., Tagliabue M., Vignola R., Microporous and Mesoporous Materials, 2013, Vol. 66, pp 37-49;
9. Nikashina V.A., Serova I.V., Rudenko B.A., Patent RF, N 94011364/26, 1994.
10. ITRC, Interstate Technology and Regulatory Council. Permeable Reactive Barrier: Technology Update PRB, Washington, 2011, 156 p.
11. Clap L., Abdelrahman M., Pana P., American Society for Engineering, Education Annual Conference and Exposition, San Antonio, Texas, 2012, pp. 1707-1720/
12. Freidman B., Terry D., Wilkins D., Spedding N. et al., Chemosphere, 2017, Vol. 174, pp. 408-420.
13. Wantanaphong J., Mooney S, Bailey E., Environ.Chem. Lett., 2005, Vol. 3, pp.19-23/
14. Otchet ekspertov OOO «IG Infomayn» 2015 god. Available at: http//www.infomine.ru/research/9/76 (accessed
7 February 2011)
15. Germanova T.V, Valieva I.R., Izv. Samar. Nauch. tsentra RAN, 2014, Vol. 16, No 1(7), pp.22-24.
16. Grigor'eva A.V. Dissertatsiya na soiskanie uchenoy stepeni kandidata geologomineralogicheskikh nauk, M., 2002, 85 p.
17. Petranovskii V., Chaves-Rivas F., Hernandez Espinoza M., Pestryakov A. et al., МАТЕС Web of Conferences, 2016, Vol. 85, pp. 01014.
18. Brown L.M., Sherry H.S., Krambek F.J., J. Phys. Chem., 1971, Vol. 75, No 25, pp. 3846-3855.
19. Thompson P.W., Tassopulos M.A., Zeolites, 1986, Vol. 6, No 1, pp. 12-20.
20. Berkovich S.Е., Nikashina V.A., Neorganicheskie materialy,1990, Vol. 25, No 5, pp. 1035-1037.
21. Lebedynets M., Sprynskyy M., Sakhnyuk I., Zbytniewski R. et al., Adsorption Science & Technology, 2004, Vol. 22, pp. 731-741.
22. Watanabe Y., Yamada H., Tanaka J., Moriyoshi Y., Journal of Chemical Technology and Biotechnology, 2005, Vol. 80, pp. 376-380.]
23. Jorgensen T.C., Weatherley L.R., Journal of Chemical Technology and Biotechnology, 2006, Vol. 81, pp. 1151-1158.
24. Maranon E., Ulmanu M., Fernandez Y., Anger I. et al., Journal of Hazardous Materials, 2006, Vol. 137, pp. 1402-1409.
25. Karadag D., Koc Y., Turan M., Armagan B., Journal of Hazardous Materials, 2006, Vol. 136, pp. 604-609.
26. Wang Y.Q., Liu S.J., Xu Z., T.W. Han Z., Journal of Hazardous Materials, 2006, Vol.136, pp.735-740.
27. Wen D.H., Ho Y.S., Tang X.Y., Journal of Hazardous Materials 2006, Vol.133, pp. 252-256.
28. Сolella С., Natural Microporous Materials in Environment Technology, 1998, Vol. l., No 362, pp. 207-225.
29. Rabideau A.J., Van Benschoten J., Patel A., Bandilla K., J.Сontaminant Hydrology, 2005, Vol. 79, No 1-2, pp. 1-24.
30. Wang Sh., Peng Y., Chemical Engineering Journal, 2010, Vol. 156, pp.11-24.
31. Doula M.K., Water Research, 2006, Vol.40, pp. 3167-3176.
32. Oter O., Akcay H., Water Environment Research, 2007, Vol. 79, pp.329-335.
33. Sprynskyy M., Buszewski B., Terzyk A.P., Namiesnik J., Journal of Colloid and Interface Science, 2006, Vol. 304, pp. 21-28.
34. Oren A.H., Kaya A., Journal of Hazardous Materials, 2006, Vol. 131, pp. 59-65.
35. Gedik K., Imamoglu I., Separation Science and Technology, 2008, Vol. 43, pp. 1191-1207.
36. Dimirkou A., Doula M.K., Desalination, 2008, Vol. 224, pp.280-292.
37. Stefanovic S.C., Logar N.Z., Margeta K., Tusar N.N. et al., Microporous and Mesoporous Materials, 2007, Vol. 105, pp. 251-259.
38. Rodriguez-Iznaga I., Rodriguez-Fuentes G., Petranovskii V., Microporous and Mesoporous Materials, 2018, Vol. 255, pp. 200-210.
39. Capasso C. , Coppola E., Iovino P., Salvestrini S. et al., Microporous and Mesoporous Materials, 2007, Vol. 105, pp. 324-328.
40. Li L.Y. , Tazaki K., Lai R., Shiraki K. et al., Applied Clay Science, 2008, Vol. 39, pp. 1-9.
41. Diaz-Nava C., Olguin M.T., Solache-Rios M., Separation Science and Technology, 2002, Vol. 37, pp. 3109-3128.
42. Samatya S., Yuksel U., Yuksel M., Kabay N., Separation Science and Technology, 2007, Vol. 42, pp. 2033-2047.
43. Faghihian H., Inter. Journal of Environment and Pollution, 2004, Vol. 22, pp. 732-739.
44. Baskan M, Pala A., Desalination, 2011, Vol. 281, pp. 396-403.
45. Kats E.M., Serova I.B., Nikashina V.A., Sorbtsionnye i khromatograficheskie protsessy, 2004, Vol. 4, No.6, pp. 775-781.
46. Kats E.M., Nikashina V.A., Serova I.B., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 3, pp. 406-412.
47.Serova I.B., Nikashina V.A., Trudy Mezhdunar. konf., Sankt-Peterburg, «Radioaktivnost' posle yadernykh vzryvov i avariy», 2006, Vol. 3, pp. 455-460.
48. Grce M., Pavelic K.,Microporous and Mesoporous Materials, 2005, Vol. 79, pp. 165-169.
49. Nikashina V.A., Kats E.M. ,Zotova V.I., Danilina N.I., Gembitskiy P.A., Materialy Mezhdunarodnogo Kongressa «Voda: ekologiya i tekhnologiya», M., 6-9 sentyabrya 1994, pp.518-525.
50. Rabideau A.J., Van Benschoten J, Khandelwal A., Repp K., Physicochemical Groundwater Remediation, 2001, Chapter 6, pp. 115-138.
51. Pawluk K.,Wrzesinski G., Lendo-Siwicka, IOP Conf. Series: Materials Sciences and Engineering,
2017, Vol. 245, 052017 doi: 10. 1088/1757-899X/245/5/052017
52. Woinarski A., Stevens G, Snape I., Process Safety and Environmental Protection, 2006, Vol. 84, issue 2, pp.109-116.
53. Gavaskar Arun R., J. Hazard. Mater., 1999, Vol. 68, pp.41-71.
54. Dong Jun, Zhao Yongsheng, ZhangWeihong, Hong Mei, J. Hazard. Mater., 2009, Vol. 161, pp. 224-230.
55. Wantanaphong J., MoonyS. J., Bailey E.H.,/ Environmental Chemistry Letters, 2005, Vol. 3, pp. 19-23.
56. Park J., Lee S., Lee C., Journal of Hazardous Materials, 2002, Vol. 95, pp. 65-79.
57. Dan Zhoi, Yan Li, Yinbo Zhang, Chang Zhang et al., J.Contaminant Hydrology, 2014, Vol. 168, pp. 1-16.
58. Di Natale F., Di Natale M., Greco R., Lancia A., J. Hazard. Mater., 2008, No 160, рр.428-434.
59. Obiri-Nyarko F., Kwiatkowska-Malina J., Malina G., Kasela T., J. Contaminant Hydrology, 2015, Vol. 177-178, pp. 76-84.
60. Nikashina V.A., Materialy 2-oy Mezhdunarodnoy konferentsii "Promyshlennye mineraly i nauchno-tekhnicheskiy progress", M., 2007, pp. 152-154.
61. Nikashina V.A., Kats E.M., Serova I.B., Sorbtsionnye i khromatograficheskie protsessy, 2008, Vol. 8, No 1, pp. 23-29.
62. Zaytseva Е.V., Berkovich S.Е., Nikashina V.A., Sb. Ispol'zovanie prirodnykh tseolitov v narodnom khozyaystve, Materialy Vsesoyuznogo Soveshchaniya, Novosibirsk, 1991, ch. 2, pp. 158-168.
63 Nikashina V.A., Kats E.M., Serova I.B., Gembitskiy P.A., Sorbtsionnye i khromatograficheskie protsessy, 2004, Vol. 4. No 5, pp. 579-591.
64. Nikashina V.A., Kats E.M., Serova I.B., Trudy Mezhdunar. konf., «Radioaktivnost' posle yadernykh vzryvov i avariy»
GIDROMЕTЕOIZDAT, 2006, Vol. 3, pp. 449-454.
65.. Nikashina V.A., Serova I.B., Kuzmina T.G., Lihareva N.I. etal., Sorbtsionnye i khromatograficheskie protsessy, 2017, Vol. 17, No.6, pp. 886-892.
66. Senyavin M.M., Rubinshteyn R.N., Venitsianov E.V., Galkina N.K. et al., Osnovy rascheta i optimizatsii ionoobmennykh protsessov, M., Nauka, 1972, 175 p.
67. Tolmachev A.M., Nikashina V.A., CHelishchev N.F. Ionoobmennye svoystva i primenenie sinteticheskikh i prirodnykh tseolitov, M., Nauka, 1981, pp. 45-63.
68. Venitsianov Е.V., Rubinshteyn R.N., Dinamika sorbtsii iz zhidkikh sred, M., Nauka, 1983, 238 p.
69. Venitsianov E.V., /Izv. AN SSSR. ser. khim., 1980, No 9, pp. 1981-1984.
70. Nikashina V.A, Galkina N.K., Senyavin M.M., Rossiyskiy Institut Nauchnoy i Tekhnicheskoy Informatsii, M., 1977, No 3668, 44 p.
71. Nikashina V.A., Sorbtsionnye i khromatograficheskie protsessy, 2008, Vol. 8, No 2, pp.227-240.
72. NikashinaV.A, Senyavin M.M., Mironova L.I., Tyurina V.A. In " New Developments in Zeolite Science Technology", Proceeding of the 7th Inter. Zeolite Conference, ed. Y. Murakami, A .Iijima and J.W. Ward, 1986, Tokyo, Japan,
pp.283-288.
73. Nikashina V A., Zaitseva E.V. In Zeolites` 91, 3rd Inter. Conf. on the Occurance, Properties and Utilization of Natural Zeolites, Havana, Cuba, 1991, pp.169-170
74. .Kats E.M., Nikashina V.A In: Natural Zeolites for the Third Millenium, C.Colella and F.A.Mumpton, eds, 2000, pp. 387-393.
75. Tokmachev M.G., Tikhonov N.A., Nikashina V.A., Bannykh L.N., Matematicheskoe modelirovanie, 2010, Vol. 22, No.5, pp.. 97-103.
76. Nikashina V.A., Serova I.B., Kats E.M., Tikhonov N.A. et al., Sorbtsionnye i khromatograficheskie protsessy, 2010, Vol. 10, No 6, pp. 949-959.
77. Nikashina V.A., Serova I.B., Каts E.M., Tikhonov N.А. et al., Clay Minerals, 2011, No 46, pp. 233- 240.
78.. Nikashina V.A., Serova I.B., Kats E.M., Tokmachev M.G. et al., Geochemistry International, 2017, Vol. 55, No 1, pp. 36-46.