Activation of carbon nanotubes for increasing the affinity interaction efficiency on the surface of a piezoelectric sensor for determining antibiotics

  • Evgenia I. Shinko postgraduate student, department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: shukshina_evg@mail.ru
  • Olga V. Farafonova associate prof., Ph.D. (chemistry), department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: farafonova. ov@mail.ru
  • Tatyana N. Ermolaeva prof., grand Ph.D (chemistry), department of chemistry, Lipetsk State Technical University, Lipetsk, e-mail: etn@stu.lipetsk.ru
  • Konstantin V. Shestopalov Deputy Director for Science of CJSC ETNA, Moscow
Keywords: activation of multi-walled carbon nanotubes, carboxylation, amination, thiolation, affinity interactions, piezoelectric immunosensor, aminoglycoside antibiotics.

Abstract

          The paper presents an assessment of the influence of methods for the derivatization of CNT through carboxylation, amination or thiolation on the efficiency of antibiotics binding - gentamicin, streptomycin and kanamycin - by an affinity layer on the surface of a piezoelectric immunosensor. To study the activation processes, we used the methods of piezoelectric microweighting, IR spectroscopy and atomic force microscopy. Cysteine was used as a surface modifier of the sensor gold electrode. Determination of antibiotics was carried out in a competitive immunoassay format, protein analyte conjugates were used as recognition molecules.
        Activated nanotubes are used in the formation of a recognition layer of affine piezoelectric sensors designed to determine aminoglycoside antibiotics. A new method is proposed for the thiolation of CNT by cysteine, which forms strong bonds with both the surface of the sensor gold electrode and the conjugate protein molecule. The conjugation pairing schemes in multilayer sensor coatings due to the formation of covalent
bonds are given.
         It was shown that more stable sensor recognition layer is formed in the presence of carboxylated nanotubes and is based on the conjugates of streptomycin, gentamicin and kanamycin with a protein molecule. At the same time, when using thiolated and aminated multi-walled carbon nanotubes, a higher concentration of antigenic determinants was observed on the sensor surface. The recognition layers based on carboxylated
CNTs are more stable in liquid media and during regeneration, and withstand 23 to 27 measurement cycles without reducing the analytical signal of the sensor by more than 5%. The study of the surface morphology of the sensor recognition layer showed a significant increase in surface roughness when using functionalized CNTs, accompanied by a simbatic change in the concentration sensitivity of the sensor. Metrological
characteristics of sensors based on activated nanotubes for the determination of streptomycin, gentamicin and kanamycin have been established. The sensors were tested when determining aminoglycoside antibiotics in model solutions and food products.

Downloads

Download data is not yet available.

References

1. Trojanowicz M., Trends Analyt Chem., 2006, Vol. 25, No 5, pp. 480-489; doi:10.1016/j.aca.2012.04.035.
2. Yang N., Chen X., Ren T., Zhang P. et al.,Sens. Actuator B-Chem., 2015, Vol. 207, pp.690-715; doi: 10.1016/j.snb.2014.10.040.
3. Mandal H. S., Su Z., Ward A., Tang X., Theranostics, 2012, Vol. 2, No 3, pp. 251-257; doi: 10.7150/thno.3726.
4. Balasubramanian K., Burghard M., Small, 2005, Vol. 1, No 2, pp. 180-192; doi:10.1002/smll.200400118.
5. Fam D.W.H., Palaniappan Al., Tok A.I.Y., Liedberg B., Sens. Actuator B-Chem., 2011, Vol. 157, pp. 1-7; doi:10.1016/j.snb.2011.03.040.
6. Wang J., Lin Y., Trends Analyt Chem., 2008, Vol. 27, No 7, pp. 619-626; doi:10.1016/j.trac.2008.05.009.
7. Veetil J.V., Ye K.M., Biotechnol. Prog., 2007, Vol. 23, pp. 517-531; doi: 10.1021/bp0602395.
8. Lei J., Ju H., Adv. Rev., 2010, Vol. 2, pp. 496-509; doi: 10.1002/wnan.94.
9. Chen R.J., Bangsaruntip S., Drouvalakis K.A., Kam N.W.S. et al., Proc. Natl. Acad. Sci. U.S.A., 2003, Vol. 100, No 9, pp. 4984-4989; doi: 10.1073/pnas.0837064100.
10. Pastorin G., Kostarelos K., Prato M., Bianko A., J. Biomed. Nanotechnol., 2005, Vol. 1, No 2, pp. 133-142; doi: 10.1166/jbn.2005.017.
11. Vairavapandian D., Vichchulada P., Lay M.D., Anal. Chim. Acta, Vol. 626, pp. 119-129; doi: 10.1016/j.aca.2008.07.052.
12. Medyantseva E.P., Brusnitsyn D.V., Varlamova R.M., Maksimov A.A. et al., J. Anal. Chem., 2017, Vol. 72, No 4, pp. 362-370; doi:
10.1134/S1061934817040086.
13. Sánchez-Tirado E., Gonzá lez-Cortés A., Yáñ ez-Sedeño P., Pingarrón J.M., Analyst, 2016, Vol. 141, pp. 5730-5737; doi:10.1039/C6AN00941G.
14. Rivas G.A., Rubianes M.D., Rodr´ıguez M.C., Ferreyra N.F. et al., Talanta, 2007, Vol. 74, pp. 291-307; doi: 10.1016/j.talanta.2007.10.013.
15. Grazhulene S.S., Red'kin A.N., Telegin G.F., Zhurnal analiticheskoj khimii, 2012, Vol. 67, No 5, pp. 479-484.
16. Farafonova O.V., Shukshina E.I., Grazhulene S.S., Ermolaeva T.N., Sorbtsionnye i khromatograficheskie protsessy, 2017, Vol. 17,
No 4, pp. 548-356; doi:10.17308/sorpchrom.2017.17/412.
17. Shukshina E.I., Farafonova O.V., Shanin I.A., Grazhulene S.S. et al., Sorbtsionnye i khromatograficheskie protsessy, 2018, Vol.18,
No 3, pp. 394-403; doi:10.17308/sorpchrom.2018.18/544.
18. Ermolaeva T.N., Kalmikova E.N., Pezokvarcevie sensori, analiticheskie vozmojnosti i perspektivi. Lipeck, FGBOU VO LGTU, 2007, 181 p.
19. Čech J., Curran J.A., Zhang D., Dewald J.L. et al., Phys. stat. sol., 2006, Vol. 243, No 13, pp. 3221-3225; doi:10.1002/pssb.200669102.
20. Curran, S. A., Cech, J., Zhang, D., Dewald, J. L. et al., J. Mater. Res., 2006, Vol. 21, No 4, pp. 1012-1018; doi:10.1557/jmr.2006.0125.
21. Voronezhtseva O.V., Ermolaeva T.N., Sorbtsionnye i khromatograficheskie protsessy, 2011, Vol. 11, No 1, pp. 68-76.
22. Voronezhtseva O.V., Diss. cand. chem. nauk. Voronezh, 2011, 142 p.
Published
2019-06-04
How to Cite
Shinko, E. I., Farafonova, O. V., Ermolaeva, T. N., & Shestopalov, K. V. (2019). Activation of carbon nanotubes for increasing the affinity interaction efficiency on the surface of a piezoelectric sensor for determining antibiotics. Sorbtsionnye I Khromatograficheskie Protsessy, 19(3), 334-343. https://doi.org/10.17308/sorpchrom.2019.19/750