Хемосорбция водорода на оксидах металлов с добавками оксида палладия (II

  • Алексей Владимирович Шапошник Воронежский государственный аграрный университет
  • Алексей Алексеевич Звягин Воронежский государственный аграрный университет
  • Олеся Анатольевна Арефьева НПО «Прибор»
  • Станислав Викторович Рябцев Воронежский государственный университет
  • Ольга Вячеславовна Дьяконова Воронежский государственный аграрный университет
  • Алексей Андреевич Васильев Государственный университете «Дубна»
Ключевые слова: хемосорбция водорода, хемосорбция кислорода, металлоксидные сенсоры, селективный анализ

Аннотация

Хемосорбция может привести к изменению электропроводности, что позволяет применять полупроводниковые материалы для создания газовых сенсоров. С другой стороны, полупроводниковые сенсоры могут быть использованы как устройства для исследования хемосорбции газов. В данной работе было поставлено две задачи. Первая из них – создание сенсора для селективного определения водорода в воздухе, в том числе, в смеси с другими газами. Вторая задача – определение механизма хемосорбции водорода на поверхности оксидов металлов с добавками оксида палладия (II).

Получены и охарактеризованы нанодисперсные материалы на основе SnO2 и WO3 с добавками 3 % PdO по массе. Проведено сравнение электрофизических характеристик этих материалов в стационарных температурных режимах, а также при температурной модуляции в присутствии водорода, метана и их смесей. Определены особенности хемосорбции водорода на поверхности металлоксидных полупроводников на основе SnO2 и WO3 с добавками PdO в режиме температурной модуляции сенсора. Показано, что экстремумы на зависимости электропроводности сенсора от температуры можно объяснить вкладом переноса протонов в общую электрическую проводимость.

Наличие экстремумов электропроводности сенсоров, которые наблюдаются в режиме термомодуляции в присутствии водорода, позволяет проводить качественный и количественный анализ не только однокомпонентных газовых систем, но также смесей водорода с другими газами-аналитами. В частности, в данной работе была показана возможность определения состава смеси водород-метан в воздухе с помощью единичного металлоксидного сенсора. Преимуществом данного подхода является простота обработки массивов многомерных данных.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Алексей Владимирович Шапошник, Воронежский государственный аграрный университет

д.х.н., заведующий кафедрой химии Воронежского государственного аграрного университета, Воронеж, Россия

Алексей Алексеевич Звягин, Воронежский государственный аграрный университет

к.х.н., доцент кафедры химии кафедры химии Воронежского государственного аграрного университета, Воронеж, Россия

Олеся Анатольевна Арефьева, НПО «Прибор»

технолог, АО НПО ПРИБОР, Санкт-Петербург, Россия

Станислав Викторович Рябцев, Воронежский государственный университет

д.ф.-м.н., заведующий лабораторией физического факультета Воронежского государственного университета, Воронеж, Россия

Ольга Вячеславовна Дьяконова, Воронежский государственный аграрный университет

к.х.н., доцент кафедры химии кафедры химии Воронежского государственного аграрного университета, Воронеж, Россия

Алексей Андреевич Васильев, Государственный университете «Дубна»

д.т.н., зав. лаборатории сенсорных систем, государственный университет «Дубна», Россия

Литература

Hübert T., Boon-brett L., Black G., Banach U., Sensors and Actuators B : Chemical Hydrogen sensors – A review. Sensors and Actuators B. 2011; 157: 329-352.

Qiu T., Zhou S., Ji J., Wu G., Yan W., Ling M., Liang C., High performance H2 sensor based on rGO-wrapped SnO2–Pd porous hollow spheres. Ceram. Int. 2022; 48(11): 15056-15063.

Meng X., Bi M., Xiao Q., Gao W., Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. Int. J. Hydrogen Energy. Hydrogen Energy Publications LLC. 2022; 47(5): 3157-3169.

Oprea A., Moretton E., Bârsan N., Becker W.J., Wöllenstein J., Weimar U., Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J. Appl. Phys. 2006; 100(3): 033716.

Liewhiran C., Tamaekong N., Wisitsoraat A., Tuantranont A., Phanichphant S., Ultra-sensitive H2+ sensors based on flame-spray-made Pd-loaded SnO2+ sensing films. Sensors Actuators, B Chem. 2013; 176(2): 893-905.

Zhang S., Yin C., Yang L., Zhang Z., Han Z., Sensors and Actuators B : Chemical Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film. Sensors Actuators B. Chem. 2019; 283: 399-406.

Luo N., Wang C., Zhang D., Guo M., Wang X., Cheng Z., Xu J, Sensors and Actuators B. Chemical Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sensors Actuators B. Chem. 2022; 354: 130982.

Meng X., Bi M., Gao W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sensors Actuators B Chem. 2022; 370: 132406.

Inyawilert K., Wisitsoraat A., Tuantranont A., Phanichphant S., Liewhiran C., Sensors and Actuators B : Chemical Ultra-sensitive and highly selective H2 sensors based on FSP-made Rh-substituted SnO2 sensing films. Sensors Actuators B. Chem. 2017; 240: 1141-1152.

Motaung D.E., Mhlongo G.H., Makgwane P.R., Dhonge B.P., Cummings F.R., Swart H.C., Sinha S., Sensors and Actuators B : Chemical Ultra-high sensitive and selective H2 gas sensor manifested by interface of n – n heterostructure of CeO2 -SnO2 nanoparticles. Sensors Actuators B. Chem. 2018; 254: 984-995.

Cai L., Zhu S., Wu G., Jiao F., Li W., Wang X., An Y., Hu Y., Sun J., Dong X., Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure. Int. J. Hydrogen Energy. 2020; 45(55): 31327-31340.

Ding W., Ansari N., Yang Y., Bachagha K., Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3–CoO nanohybrids and its sensing mechanism. Int. J. Hydrogen Energy. 2021; 46(56): 28823-28837.

Zhu S., Tian Q., Wu G., Bian W., Sun N., Wang X., Li C., Zhang Y., Dou H., Gong C., Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film. Int. J. Hydrogen Energy. Hydrogen Energy Publications LLC, 2022; 47: 17821-17834

Mineo G., Moulaee K., Neri G., Mirabella S., Bruno E. H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods. Sensors Actuators B Chem. 2021; 348: 130704.

Zhao M., Huang J.X., Ong C.W. Sensors and Actuators B : Chemical Diffusion-controlled H2 sensors composed of Pd-coated highly porous WO3 nanocluster films. Sensors Actuators B. Chem. 2014; 191: 711-718.

Lee Y., Kalanur S.S., Shim G., Park J., Seo H. Sensors and Actuators B : Chemical Highly sensitive gasochromic H2 sensing by nano-columnar WO3 -Pd films with surface moisture. Sensors Actuators B. Chem. 2017; 238: 111-119.

Zhou R., Lin X., Xue D., Zong F., Zhang J., Duan X., Li Q., Wang T. Sensors and Actuators B : Chemical Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sensors Actuators B. Chem. 2018; 260: 900-907.

Lee J., Kim S.Y., Yoo H.S., Lee W. Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature. Sensors Actuators B Chem. 2022; 368: 132236.

Senguttuvan T.D., Srivastava V., Tawal J.S., Mishra M., Srivastava S., Jain K. Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method. Sensors Actuators, B Chem. 2010; 150(1): 384-388.

Boudiba A., Zhang C., Umek P., Bittencourt C., Snyders R., Olivier M.G., Debliquy M. Sensitive and rapid hydrogen sensors based on Pd-WO3 thick films with different morphologies. Int. J. Hydrogen Energy. 2013; 38(5): 2565-2577.

Horprathum M., Srichaiyaperk T., Samransuksamer B., Wisitsoraat A., Eiamchai, P., Limwichean S., Chananonnawathorn C., Aiempanakit K., Nuntawong N., Patthanasettakul V. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering. ACS Appl. Mater. Interfaces. 2014; 6(24): 22051-22060.

Zhang C., Boudiba A., Navio C., Bittencourt C., Olivier M., Snyders R., Debliquy M. Highly sensitive hydrogen sensors based on co-sputtered platinum-activated tungsten oxide films. Int. J. Hydrogen Energy. 2010; 36(1): 1107-1114.

Drmosh Q.A., Hendi A.H., Hossain M.K., Yamani Z.H., Moqbel R.A., Hezam A., UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection. Sensors Actuators, B Chem. 2019; 290: 666-675.

Kumar G.S., Xuejin L., Du Y., Geng Y., Hong X. UV-light enhanced high sensitive hydrogen (H2) sensor based on spherical Au nanoparticles on ZnO nano-structured thin films. J. Alloys Compd. 2019; 798: 467-477.

Adachi Y. Enhancement of H2 gas sensing properties of ZnO films by Mg alloying. Surfaces and Interfaces. 2022; 28: 101597.

Du Y., Gao S., Mao Z., Zhang C., Zhao Q., Zhang S. Sensors and Actuators B : Chemical Aerobic and anaerobic H 2 sensing sensors fabricated by diffusion membranes depositing on Pt-ZnO film. Sensors Actuators B. Chem. 2017; 252: 239-250.

Kim H., Pak Y., Jeong Y., Kim W., Kim J., Young G. Sensors and Actuators B : Chemical Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sensors Actuators B. Chem. 2018; 262: 460-468.

Kim J., Mirzaei A., Woo H., Sub S.Sensors and Actuators B : Chemical Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas. Sensors Actuators B. Chem.2019; 297; 126693.

Bao Y., Wei P., Xia X., Huang Z., Homewood K., Gao Y. Remarkably enhanced H2 response and detection range in Nb doped rutile/anatase heterophase junction TiO2 thin film hydrogen sensors. Sensors Actuators, B Chem. 2019; 301: 127143.

Kumaresan M., Venkatachalam M., Saroja M., Gowthaman P. TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorg. Chem. Commun. 2021; 129: 108663.

Kim H., Moon W., Jun, Y., Hong S. High H 2 sensing performance in hydrogen trititanate-derived TiO 2. 2006; 120: 63-68.

Xia X., Wu W., Wang Z., Bao Y., Huang Z., Gao Y. Sensors and Actuators B : Chemical A hydrogen sensor based on orientation aligned TiO 2 thin films with low concentration detecting limit and short response time. Sensors Actuators B. Chem. 2016; 234: 192-200.

Yoo K.S., Park S.H., Kang J.H. Nano-grained thin-film indium tin oxide gas sensors for H 2 detection. Sensors and Actuators 2005; 108: 159-164.

Steinebach H., Kannan S., Rieth L., Solzbacher F. Sensors and Actuators B : Chemical H 2 gas sensor performance of NiO at high temperatures in gas mixtures. Sensors Actuators B. Chem. 2010; 151(1): 162-168.

Abdul R., Sabirin A., Zhen J., Field M.R., Austin M., Sensors and Actuators B : Chemical Nanoporous Nb2O5 hydrogen gas sensor. Sensors Actuators B. Chem. 2013; 176; 149-156.

Lu S., Zhang Y., Liu J., Li H.Y., Hu Z., Luo X., Gao N., Zhang B., Jiang J., Zhong A. Sensitive H2 gas sensors based on SnO2 nanowires. Sensors Actuators, B Chem. 2021; 345: 130334.

Pradeep N., Venkatraman U., Grace A.N. Flexible hydrogen gas sensor: ZnO decorated SnO2 nanowire on over head projector (OHP) sheet substrate. Mater. Today Proc. 2019; 45: 4073-4080.

Zappa D., Kaur N., Moumen A., Comini E. Metal Oxide Nanowire-Based Sensor Array for Hydrogen Detection. Micromachines. 2023; 14: 2124.

Kim J., Mirzaei A., Woo H., Sub S. Sensors and Actuators B : Chemical Improving the hydrogen sensing properties of SnO 2 nanowire-based conductometric sensors by Pd-decoration. Sensors Actuators B. Chem. 2019; 285: 358-367.

Shaposhnik A.V., Shaposhnik D.A., Turishchev S.Y., Chuvenkova O.A., Ryabtsev S.V., Vasiliev A.A., Vilanova X., Hernandez-Ramirez F., Morante J.R. Gas sensing properties of individual SnO2 nanowires and SnO2 sol-gel nanocomposites. Beilstein J. Nanotechnol. 2019; 10: 1380-1390.

Aysha Parveen R., Ajay Rakkesh R., Durgalakshmi D., Balakumar S. Graphene-Ag2S hybrid nanostructures: A hybrid gas sensor for room temperature hydrogen sensing application. Mater. Lett. 2021; 303: 130470.

Zhu Z., Liu C., Jiang F., Liu J., Ma X., Liu P., Xu J., Wang L., Huang R.Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 2020; 399: 123054.

Tabares G., Redondo-Cubero A., Vazquez L., Revenga M., Cortijo-Campos S., Lorenzo E., de Andrés A., Ruiz E., Pau J.L.A route to detect H2 in ambient conditions using a sensor based on reduced graphene oxide. Sensors Actuators, A Phys. 2020; 304: 111884.

Wu J., Guo Y., Wang Y., Zhu H., Zhang X. Ti3C2 MXene-derived sodium titanate nanoribbons for conductometric hydrogen gas sensors. Sensors Actuators B Chem. 2022; 361: 131693.

Lee S., Kang Y., Lee J., Kim J., Shin J.W., Sim S., Go D., Jo E., Kye S., Kim J. Atomic layer deposited Pt nanoparticles on functionalized MoS2 as highly sensitive H2 sensor. Appl. Surf. Sci. 2022; 571: 151256.

Rasch F., Postica V., Schütt F., Kumar Y., Shaygan A., Lohe M.R., Feng X., Adelung R., Lupan O. Sensors and Actuators B : Chemical Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sensors Actuators B. Chem. 2020; 320: 128363.

Su P., Chuang Y. Sensors and Actuators B : Chemical Flexible H 2 sensors fabricated by layer-by-layer self-assembly thin film of multi-walled carbon nanotubes and modified in situ with Pd nanoparticles. Sensors Actuators B. Chem. 2010; 145(1): 521-526.

Katsuki A., Fukui K. H2 selective gas sensor based on SnO2. Sensors Actuators, B Chem. 1998; 52(1-2): 30-37.

Weh T., Fleischer M., Meixner H. Optimization of physical filtering for selective high temperature H 2 sensors. Sensors and Actuators B. 2000; 68: 146-150.

Fleischer, M., Seth, M., Kohl, C., & Meixner, H.P. (1996). A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sensors and Actuators B-chemical, 1996; 36: 297-302.

Meng X., Zhang Q., Zhang S., He Z. The Enhanced H 2 Selectivity of SnO 2 Gas Sensors with the Deposited SiO 2 Filters on Surface of the Sensors. Sensors. 2019; 19: 2478.

Layer M. Hydrogen Sensing Performance of ZnO Schottky Diodes in Humid Ambient Conditions with PMMA. Sensors. 2020; 20: 835

Yakovlev P.V., Shaposhnik A.V., Voishchev V.S., Kotov V.V., Ryabtsev S.V.. Determination of gases using polymer-coated semiconductor sensors. J. Anal. Chem. 2002; 57(3): 276-279.

Huo L., Yang X., Liu Z., Tian X., Qi T., Wang X., Yu K., Sun J., Fan M. Sensors and Actuators B : Chemical Modulation of potential barrier heights in Co3O4 / SnO 2 heterojunctions for highly H 2 -selective sensors. Sensors Actuators B. Chem., 2017; 244: 694-700.

Krivetskiy V., Efitorov A., Arkhipenko A., Vladimirova S., Rumyantseva M., Dolenko S., Gaskov A. Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode. Sensors Actuators, B Chem. 2018; 254:502-513.

Shaposhnik A.V., Moskalev P.V., Chegereva K.L., Zviagin A.A., Vasiliev A.A. Selective gas detection of H2 and CO by a single MOX-sensor. Sensors Actuators, B Chem., 2021; 334(18): 129376.

Vasiliev A., Shaposhnik A., Moskalev P., Kul O. SnO 2 – PdO x and Selective Determination of CO and H 2 in Air. Sensors. 2023;. 23: 373058.

Fetisov V., Davardoost H., Mogylevets V. Technological Aspects of Methane–Hydrogen Mixture Transportation through Operating Gas Pipelines Considering Industrial and Fire Safety. Fire. 2023; 6(10)

Shaposhnik A., Moskalev P., Sizask E., Ryabtsev S., Vasiliev A. Selective detection of hydrogen sulfide and methane by a single MOX-sensor. Sensors (Switzerland). 2019;19(5): 1135.

Shaposhnik A. V., Zviagin A. A., Ryabtsev S. V., Dyakonova O. V., Vysot-skaya E. A. Synthesis and sensory proper-ties of tungsten (VI) oxide-based nano-materials. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 2024; 26(2): 349-355. https://doi.org/10.17308/kcmf.2024.26/11946

Krivetskiy V.V., Rumyantseva M.N., Gaskov A.M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russian Chemical Reviews. 2013; 82(10): 917-941. https://doi.org/10.1070/RC2013v082n10ABEH004366

SHaposhnik A.V. Opredelenie opti-mal'nyh temperaturnyh rezhimov polupro-vodnikovyh sensorov. Sorbtsionnye i khro-matograficheskie protsessy. 2008; 8(3): 501-506. (In Russ.)

Shaposhnik A., Moskalev P., Vasiliev A. Selective Detection of Hydrogen and Hydrogen Containing Gases with Metal Oxide Gas Sensor Operating in Non-Stationary Thermal Regime. Proceedings. 2019; 14(1):2. https://doi.org/10.3390/proceedings2019014002

Hara S., Sakamoto H., Miyayama M., Kudo T. Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature. Solid State Ionics. 2002; 154: 679-685.

Dobrovolsky Y., Leonova L, Nadkhina S., Panina N. Low-temperature proton conductivity in hydrated and nonhydrated tin dioxide. Solid State Ionics. 1999; 119(1): 275-279.

Опубликован
2024-07-18
Как цитировать
Шапошник, А. В., Звягин, А. А., Арефьева, О. А., Рябцев, С. В., Дьяконова, О. В., & Васильев, А. А. (2024). Хемосорбция водорода на оксидах металлов с добавками оксида палладия (II. Сорбционные и хроматографические процессы, 24(3), 321-334. https://doi.org/10.17308/sorpchrom.2024.24/12235