Up-conversion luminescence in mixed crystals BaY1.8Lu0.2F8 doped with Er3+ ions excited at 1532 nm.

Keywords: Upconversion luminescence, External energy yield, Correlated color temperatures, Er3, Fluoride crystals, Solid solutions

Abstract

        Increasing the efficiency of upconversion luminophores is an important problem in materials science. Here we report on approach of use of disordered crystals namely solid solutions BaY1.8Lu0.2F8 doped with Er3+ ions to improve spectral characteristics and efficiency of upconversion from near IR spectral region. It is shown that investigated compound provide up to 9.4% of external energy yield of the up-conversion luminescence at an excitation power density of 6 W/cm2 at 1532 nm for the 10 at.% of Er3+ doping. Also the investigated crystals of BaY1.8Lu0.2F8:Er3+ allow the control of the CCT parameter in the range of 2384–5149 K by changing the concentration and power density of the excitation. Advantages revealed in this work for crystalline compounds BaY1.8Lu0.2F8:Er3+ such as wide absorption bands in the infrared spectral range, a high external energy yield, and a controllable distribution of intensity of luminescence bands makes them prospective to improve the efficiency of double-sided solar cells.

Downloads

Download data is not yet available.

Author Biographies

Alexey S. Nizamutdinov, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher, Associate Professor, Kazan Federal
University (Kazan, Russian Federation).

Sergey V. Gushchin, National Research Mordovia State University, 68 Bolshevitskaya str., Saransk 430005, Russia

postgraduate student, National
Research Mordovia State University (Saransk, Russian
Federation).

Sergey A. Bukarev, National Research Mordovia State University, 68 Bolshevitskaya str., Saransk 430005, Russia

postgraduate student, National
Research Mordovia State University (Saransk, Russian
Federation).

Alexey A. Shavelev, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

Junior Researcher, Kazan
Federal University (Kazan, Russian Federation).

Mikhail A. Marisov, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federatio; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Sciences, 10/7 Sibirsky av., Kazan 420029, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Kazan Physical-Technical Institute, Kazan
Federal University (Kazan, Russian Federation).

Ainur A. Shakirov, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

Junior Researcher, Kazan Federal
University (Kazan, Russian Federation).

Airat G. Kiiamov, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Kazan Federal University (Kazan, Russian
Federation).

Anna V. Astrakhantseva, Kazan Federal University, 18 Kremlevskaja str., Kazan 420008, Russian Federation

Laboratory Assistant,
Kazan Federal University (Kazan, Russian Federation)

Andrey A. Lyapin, National Research Mordovia State University, 68 Bolshevitskaya str., Saransk 430005, Russia

Cand. Sci. (Phys.–Math.),
Associate Professor, National Research Mordovia State
University (Saransk, Russian Federation).

References

Lüthi S. R., Pollnau M., Güdel H. U., Hehlen M. P. Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm. Physical Review B. 1999;60(1): 162–178. https://doi.org/10.1103/PhysRevB.60.162

Wang Y., Ohwaki J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Applied Physics Letters. 1993;63(24): 3268–3270. https://doi.org/10.1063/1.110170

Alexandrov A. A., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Synthesis of upconversion luminophores based on calcium fluoride. Condensed Matter and Interphases. 2020;22(1): 3–10. https://doi.org/10.17308/kcmf.2020.22/2524

Singh R., Madirov E., Busko D., Hossain I. M., Konyushkin V. A., Nakladov A. N., Kuznetsov S. V., Farooq A. , Gharibzadeh S. , Paetzold U. W. , Richards B. S., Turshatov A. Harvesting sub-bandgap photons via upconversion for perovskite solar cells. ACS Applied Materials and Interfaces. 2021;13(46): 54874–54883. https://doi.org/10.1021/acsami.1c13477

Van Den Hoven G. N., Snoeks E., Polman A. Upconversion in Er-implanted Al2O3 waveguides. Journal of Applied Physics. 1996;79(3): 1258–1266. https://doi.org/10.1063/1.361020

Lyapin A. A., Gushchin, S. V., Kuznetsov S. V., Ryabochkina P. A., Ermakov A. S., Proydakova V. Yu., Voronov V. V., Fedorov P. P., Artemov S. A., Yapryntsev A. D., Ivanov V. K. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express.2018;8(7): 1863–1869. https://doi.org/10.1364/OME.8.001863

Rubin J., Brenier A., Moncorge R., Pedrini C. Excited-state absorbtion and energy transfer in Er3+- doped LiYF4. Journal of Luminescence. 1986;36(1): 39—47. https://doi.org/10.1016/0022-2313(86)90029-3

Brede R., Heumann E., Koetke J, Danger T., Huber G., Chai B. Green up-conversion laser emission in Er‑doped crystals at room temperature. Applied Physics Letters. 1993;63(15): 2030–2031. https://doi.org/10.1063/1.110581

Kaiser M., Würth C., Kraft M., Hyppänen I., Soukka T., Resch-Genger U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nanoand micrometer-sized particles-measurements and simulations. Nanoscale. 2017;9(28): 10051–10058. https://doi.org/10.1039/c7nr02449e

Madirov E. I., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Bergfeldt T., Busko D., Howard I. A., Richards B. S., Kuznetsov S. V., Turshatov A. An upconversion luminophore with high quantum yield and brightness based on BaF2:Yb3+,Er3+ single crystals. Journal of Materials Chemistry C. 2021;9(10): 3493–3503. https://doi.org/10.1039/d1tc00104c

Liu Y., Zhou Z., Zhang S., Zhao E., Ren J., Liu L., Zhang J. Mechanisms of upconversion luminescence of Er3+-doped NaYF4 via 980 and 1530 nm excitation. Nanomaterials. 2021;11(10): 2767. https://doi.org/10.3390/nano11102767

Ivanova S., Pellé F. Strong 1.53 um to NIR–VIS– UV upconversion in Er-doped fluoride glass for highefficiency solar cells. Journal of the Optical Society of America B. 2009;26(10): 1930–1937. https://doi.org/10.1364/JOSAB.26.001930

Shalav A., Richards B. S., Trupke T. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Applied Physics Letters. 2005;86(1): 013505-1–013505-3. https://doi.org/10.1063/1.1844592

Ivaturi A., MacDougall, Sean K. W., Martín- Rodríguez R., Quintanilla M., Marques-Hueso J., Krämer, Karl W., Meijerink A., Richards, Bryce S. Optimizing infrared to near infrared upconversion quantum yield of b-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics. 2013; 114(1): 013505. https://doi.org/10.1063/1.4812578

Boccolini A., Faoro R., Favilla E., Veronesi S., Tonelli M. BaY2F8 doped with Er3+: An upconverter material for photovoltaic application. Journal of Applied Physics. 2013;114(6): 064904. https://doi.org/10.1063/1.4817171

Kaminskii A. A., Sobolev B. P., Sarkisov S. E., Denisenko G. A., Ryabchenkov V. V., Fedorov V. A., Uvarova T. V. Physicochemical aspects of the synthesis of BaLn2F8-Ln3+ single crystals. Spectroscopy and stimulated emission of these crystals. Izv. Akad. Nauk SSSR, Neorg. Mater. 1982;18(3): 482–497. (In Russ.)

Published
2022-09-20
How to Cite
Nizamutdinov, A. S., Gushchin, S. V., Bukarev, S. A., Shavelev, A. A., Marisov, M. A., Shakirov, A. A., Kiiamov, A. G., Astrakhantseva, A. V., & Lyapin, A. A. (2022). Up-conversion luminescence in mixed crystals BaY1.8Lu0.2F8 doped with Er3+ ions excited at 1532 nm. Condensed Matter and Interphases, 24(3), 387-396. https://doi.org/10.17308/kcmf.2022.24/10256
Section
Original articles