Up-conversion luminescence in mixed crystals BaY1.8Lu0.2F8 doped with Er3+ ions excited at 1532 nm.
Abstract
Increasing the efficiency of upconversion luminophores is an important problem in materials science. Here we report on approach of use of disordered crystals namely solid solutions BaY1.8Lu0.2F8 doped with Er3+ ions to improve spectral characteristics and efficiency of upconversion from near IR spectral region. It is shown that investigated compound provide up to 9.4% of external energy yield of the up-conversion luminescence at an excitation power density of 6 W/cm2 at 1532 nm for the 10 at.% of Er3+ doping. Also the investigated crystals of BaY1.8Lu0.2F8:Er3+ allow the control of the CCT parameter in the range of 2384–5149 K by changing the concentration and power density of the excitation. Advantages revealed in this work for crystalline compounds BaY1.8Lu0.2F8:Er3+ such as wide absorption bands in the infrared spectral range, a high external energy yield, and a controllable distribution of intensity of luminescence bands makes them prospective to improve the efficiency of double-sided solar cells.
Downloads
References
Lüthi S. R., Pollnau M., Güdel H. U., Hehlen M. P. Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm. Physical Review B. 1999;60(1): 162–178. https://doi.org/10.1103/PhysRevB.60.162
Wang Y., Ohwaki J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Applied Physics Letters. 1993;63(24): 3268–3270. https://doi.org/10.1063/1.110170
Alexandrov A. A., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Synthesis of upconversion luminophores based on calcium fluoride. Condensed Matter and Interphases. 2020;22(1): 3–10. https://doi.org/10.17308/kcmf.2020.22/2524
Singh R., Madirov E., Busko D., Hossain I. M., Konyushkin V. A., Nakladov A. N., Kuznetsov S. V., Farooq A. , Gharibzadeh S. , Paetzold U. W. , Richards B. S., Turshatov A. Harvesting sub-bandgap photons via upconversion for perovskite solar cells. ACS Applied Materials and Interfaces. 2021;13(46): 54874–54883. https://doi.org/10.1021/acsami.1c13477
Van Den Hoven G. N., Snoeks E., Polman A. Upconversion in Er-implanted Al2O3 waveguides. Journal of Applied Physics. 1996;79(3): 1258–1266. https://doi.org/10.1063/1.361020
Lyapin A. A., Gushchin, S. V., Kuznetsov S. V., Ryabochkina P. A., Ermakov A. S., Proydakova V. Yu., Voronov V. V., Fedorov P. P., Artemov S. A., Yapryntsev A. D., Ivanov V. K. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express.2018;8(7): 1863–1869. https://doi.org/10.1364/OME.8.001863
Rubin J., Brenier A., Moncorge R., Pedrini C. Excited-state absorbtion and energy transfer in Er3+- doped LiYF4. Journal of Luminescence. 1986;36(1): 39—47. https://doi.org/10.1016/0022-2313(86)90029-3
Brede R., Heumann E., Koetke J, Danger T., Huber G., Chai B. Green up-conversion laser emission in Er‑doped crystals at room temperature. Applied Physics Letters. 1993;63(15): 2030–2031. https://doi.org/10.1063/1.110581
Kaiser M., Würth C., Kraft M., Hyppänen I., Soukka T., Resch-Genger U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nanoand micrometer-sized particles-measurements and simulations. Nanoscale. 2017;9(28): 10051–10058. https://doi.org/10.1039/c7nr02449e
Madirov E. I., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Bergfeldt T., Busko D., Howard I. A., Richards B. S., Kuznetsov S. V., Turshatov A. An upconversion luminophore with high quantum yield and brightness based on BaF2:Yb3+,Er3+ single crystals. Journal of Materials Chemistry C. 2021;9(10): 3493–3503. https://doi.org/10.1039/d1tc00104c
Liu Y., Zhou Z., Zhang S., Zhao E., Ren J., Liu L., Zhang J. Mechanisms of upconversion luminescence of Er3+-doped NaYF4 via 980 and 1530 nm excitation. Nanomaterials. 2021;11(10): 2767. https://doi.org/10.3390/nano11102767
Ivanova S., Pellé F. Strong 1.53 um to NIR–VIS– UV upconversion in Er-doped fluoride glass for highefficiency solar cells. Journal of the Optical Society of America B. 2009;26(10): 1930–1937. https://doi.org/10.1364/JOSAB.26.001930
Shalav A., Richards B. S., Trupke T. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Applied Physics Letters. 2005;86(1): 013505-1–013505-3. https://doi.org/10.1063/1.1844592
Ivaturi A., MacDougall, Sean K. W., Martín- Rodríguez R., Quintanilla M., Marques-Hueso J., Krämer, Karl W., Meijerink A., Richards, Bryce S. Optimizing infrared to near infrared upconversion quantum yield of b-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics. 2013; 114(1): 013505. https://doi.org/10.1063/1.4812578
Boccolini A., Faoro R., Favilla E., Veronesi S., Tonelli M. BaY2F8 doped with Er3+: An upconverter material for photovoltaic application. Journal of Applied Physics. 2013;114(6): 064904. https://doi.org/10.1063/1.4817171
Kaminskii A. A., Sobolev B. P., Sarkisov S. E., Denisenko G. A., Ryabchenkov V. V., Fedorov V. A., Uvarova T. V. Physicochemical aspects of the synthesis of BaLn2F8-Ln3+ single crystals. Spectroscopy and stimulated emission of these crystals. Izv. Akad. Nauk SSSR, Neorg. Mater. 1982;18(3): 482–497. (In Russ.)
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.