STUDY OF ZnO, SnO2 AND ZnO/SnO2 NANOSTRUCTURES SYNTHESIZED BY THE GAS-TRANSPORT
Abstract
Zinc oxide (ZnO), tin dioxide (SnO2) and compounds ZnO/SnO2 (ZTO) nanostructures have been synthesized successfully from the vapor phase. XRD analyses showed that ZnO hexagonal wurtzite crystal structure, SnO2 with a rutile crystal structure and zinc stannate (ZnSnO3) and/or
dizinc stannate (Zn2SnO4) were condensed from the vapor phase when Zn and/or Sn metal or their oxides individually or mixed were used as the starting materials. The formation of either zinc or dizinc stannate was controlled by the Zn/Sn ratio and growth technique. SEM investigations showed that ZnO grew mainly in the form of nanostructures. These are believed to be originated from the common tetrapod structure of ZnO. While SnO2 grows in the form of tetragonal nanowires with rectangle-like cross section and nanoparticles, ZTO grows in the form of nanostructures.
Downloads
References
2. Edelstein A. S., Cammarata R. C. Nanomaterials: Synthesis, Properties, and Applications, Institute of Physics, Bristol, 1996. P. 323.
3. Chow G. M., Gonsalves K. E. Nanotechnology: Molecularly Designed Materials, ACS Symposium Series 622, ACS, Washington, DC, 1996. P. 250.
4. Hadijipanyis G. C., Siegel R. W., Nanophase materials: synthesis, properties, applications, Kluwer Academic Publications, London, 1994. P. 121.
5. Wang Z. L., Nanowires and nanobelts — materials, properties and devices, metal and semiconductor nanowires, Kluwer Academic Publisher, New York, 2003. V. I. P. 397.
6. Wang Z. L., Nanowires and nanobelts — materials, properties and devices, metal and semiconductor nanowires, Kluwer Academic Publisher, New York, 2003. V. II. P. 257.
7. Sung J. H., Lee Y. S., Lim J. W., et. al. // Sens. Actuators. B. 2000. V. 66. P. 149—152.
8. Giefers H., Porsch F., Wortmann G., et. al. // Solid State Ionics. 2005. V. 167. P. 199—207.
9. Fouad O. A. // J. Nanosci Nanotechnol. 2006. V. 6. P. 2090—2094.
10. Jie J., Wang G., Han X., et. al. // J. Phys. Chem. B. 2004. V. 108. P. 17027—17031.
11. Sangaletti L., Depro L.E., Dieguez A., et. al. // Sens. Actuator. B. 1997. V. 44. P. 268—272.
12. Ristoscu C., Cultera L., Dima A.,. et. al. // Appl. Surf. Sci. 2005. V. 147. P. 95—100.
13. Zhu H., Yang D., Yu G., et. al. // J. Phys. Chem. B. 2006. V. 110. P. 7631—7635.
14. Xu J., Jia X., Lou X., et. al. // Soild-State Electron. 2006. V. 50. P. 504—507.
15. Manna L., Scher E. C., Alivisatos A. P., et. al. // J. Am. Chem. Soc. 2000. V. 122. P. 12700—12706.
16. Fouad O. A. // Cryst. Res. Technol. 2006. V. 41. P. 880—884.
17. Yang P., Wu Y., Fan R., et. al. // Int. J. Nanosci. 2002. V. 1. P. 1—39.
18. El-Shall M. S., Graiver D., Pernisz U., et. al. // Nanostruct Mater. 1995. V. 6. P. 297—300.
19. El-Shall M. S., Abdelsayed V., Pithawalla Y. B., et. al. // J. Phys. Chem. B. 2003. V. 107. P. 2882—2886.
20. Chen Z. G., Li F., Liu G., et. al. // J. Nanosci. Nanotechnol. 2006. V. 6. P. 704—707.
21. Kumar N., Dorfman A., Hahm J., et. al. // J. Nanosci. Nanotechnol. 2005. V. 5. P. 19165—19169.
22. Glaspell G., Fuco L., El-Shall M. S., et. al. // J. Phys. Chem. B. 2005. V. 109. P. 17350—17356.