Biocatalysts based on papain associates with chitosan nanoparticles

  • Svetlana S. Goncharova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-3381-2008
  • Yulia A. Redko Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0009-0008-8318-8833
  • Maria S. Lavlinskaya Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation https://orcid.org/0000-0001-9058-027X
  • Andrey V. Sorokin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation https://orcid.org/0000-0001-5268-9557
  • Marina G. Holyavka Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation https://orcid.org/0000-0002-1390-4119
  • Maxim S. Kondratyev Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Institute of Cell Biophysics of Russian Academy of Sciences, 3 Institutskaya st., Pushchino 142290, Russian Federation https://orcid.org/0000-0001-6717-4206
  • Valery G. Artyukhov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-5872-8382
Keywords: Nanoparticles, Papain, Chitosan, Association

Abstract

      The research purpose was to develop and study biocatalysts based on papain associates with chitosan nanoparticles. We obtained medium and high molecular weight chitosan nanoparticles, both with and without ascorbic acid .
      When the papainna-noparticles complexes with ascorbic acid were formed, the catalytic activity of the enzyme increased by 3 % for medium molecular weight chitosan and by 16 % for high molecular weight chitosan. After 168 hours of incubation in 0.05 M of Tris-HCl buffer (pH 7.5) at 37 °C, the free enzyme retained 15 % of its catalytic activity, whereas its associates with chitosan nanoparticles exhibited ~ 30 %. The papain complex with chitosan nanoparticles and ascorbic acid exhibited 40 % of the enzyme catalytic activity.
       We simulated the bonds and interactions within the chitosan-ascorbic acid-papain complex. The proposed biocatalysts have high prospects for effective use in cosmetology, biomedicine, and pharmacy.

Downloads

Download data is not yet available.

Author Biographies

Svetlana S. Goncharova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Junior Researcher,
department of biophysics and biotechnology, Voronezh
State University (Voronezh, Russian Federation).

Yulia A. Redko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

master student, department of
biophysics and biotechnology, Voronezh State
University (Voronezh, Russian Federation).

Maria S. Lavlinskaya, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation

Cand. Sci. (Chem.), Senior
Researcher, Department of Biophysics and
Biotechnology, Voronezh State University; Senior
Researcher of Bioresource Potential of the Seaside
Territory Laboratory, Sevastopol State University
(Sevastopol, Russian Federation).

Andrey V. Sorokin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation

postgraduate student,
Department of Macromolecular Compounds and
Colloidal Chemistry, Voronezh State University, Junior
Researcher, Department of Biophysics and
Biotechnology, Voronezh State University, Junior
Researcher of Bioresource Potential of the Seaside
Territory Laboratory, Sevastopol State University
(Sevastopol, Russian Federation).

Marina G. Holyavka, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya st., Sevastopol 299053, Russian Federation

Dr. Sci. (Biology), Professor,
Department of Biophysics and Biotechnology,
Voronezh State University (Voronezh, Russian
Federation), Professor of Physics Department,
Sevastopol State University (Sevastopol, Russian
Federation).

Maxim S. Kondratyev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Institute of Cell Biophysics of Russian Academy of Sciences, 3 Institutskaya st., Pushchino 142290, Russian Federation

Cand. Sci. (Phys.–Math.),
Head of the Laboratory of Structure and Dynamics of
Biomolecular Systems, Institute of Cell Biophysics of
the Russian Academy of Sciences (Pushchino, Russian
Federation).

Valery G. Artyukhov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Biology), Professor,
Head of the Biophysics and Biotechnology Department,
Voronezh State University (Voronezh, Russian
Federation)

References

Hillaireau H., Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences. 2009,66: 2873–2896. https://doi.org/10.1007/s00018-009-0053-z

Ashurov N. S., Yugai S. M., Shakhobutdinov S. S…. Atakhanov A. A. Physicochemical studies of the structure of chitosan and chitosan ascorbate nanoparticles. Russian Chemical Bulletin. 2022;71: 227–231. https://doi.org/10.1007/s11172-022-3401-x

Medvedeva I. V., Medvedeva O. M., Studenok A. G., Studenok G. A., Tseytlin, E. M. New composite materials and processes for chemical, phisico-chemical and biochemical technologies of water purification. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya Khimicheskaya Tekhnologiya (ChemChemTech). 2022; 66(1): 6–27. https://doi.org/10.6060/ivkkt.20236601.6538

Egebro Birk S., Boisen A., Hagner Nielsen L. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews. 2021;174: 30–52. https://doi.org/10.1016/j.addr.2021.04.005

Maevskaya E. N., Dresvyanina E. N., Shabunin A. S., … Zinoviev E. V. Preparation and study of the properties of hemostatic materials based on chitosan and chitin nanofibrils*. Rossiiskie Nanotekhnologii. 2020;15(4): 493–504. (In Russ.). https://doi.org/10.1134/S199272232004007X

Kolesov S. V., Gurina M. S., Mudarisova R. K. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinamide. Russian Journal of General Chemistry. 2018;88: 1694–1698. https://doi.org/10.1134/S1070363218080224

Cheung R., Ng T., Wong J., Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015;13: 5156–5186. https://doi.org/10.3390/md13085156

Popova E. V., Tikhomirova V. E., Beznos O. V., Grigoriev Yu. V., Chesnokova N. B., Kost O. A. Chitosan nanoparticles – the drug delivery system to the anterior segment of the eye. Moscow University Chemistry Bulletin. 2023;64(2): 141–151. https://doi.org/10.55959/MSU0579-9384-2-2023-64-2-141-151

Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180

Pankova S. M., Sakibaev F. A., Holyavka M. G., Artyukhov V. G. A possible role of charged amino-acid clusters on the surface of cysteine proteases for preserving activity when binding with polymers. Biophysics. 2022;67(1): 8–14. https://doi.org/10.1134/S0006350922010146

Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091

Koroleva V. A. , Olshannikova S. S. , Holyavka M. G., Artyukhov V. G. Thermal inactivation of cysteine proteases: the key stages. Biophysics. 2021;66(3): 364–372. https://doi.org/10.1134/S0006350921030088

Kong Y. R., Jong Y. X., Balakrishnan M., … Khaw K. Y. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology. 2021;10(4): 20. https://doi.org/10.3390/biology10040287

Semashko T. A., Lysogorskaya E. N., Oksenoit E. S., Bacheva A. V., Filippova I. Yu. Chemoenzymatic synthesis of new fluorogenous substrates for cysteine proteases of the papain family. Russian Journal of Bioorganic Chemistry. 2008;34(3): 339–343. https://doi.org/10.1134/S1068162008030151

Szeto Y. S., Hu Z. Method for preparing chitosan nano-particles. Patent no US2008/0234477 A1. Publ. 25.09.2008.

Olshannikova S.S., Re d ko Yu . A . , Lavlinskaya M. S., Sorokin A. V., Kholyavka M. G., Artyukhov V. G. reparation of papain complexes with chitosan microparticles and evaluation of their stability using the level of enzyme activity. Khimiko-Farmatsevticheskii Zhurnal. 2021;55(11): 51-55. (In Russ., abstract in Eng.). https://doi.org/10.30906/0023-1134-2021-55-11-51-55

Koroleva V. A., Holyavka M. G., Olshannikova S. S., Artyukhov V. G. Formation of ficine complexes with chitozan nanoparticles with a high level of proteolytic activity . Russian Journal of Biopharmaceuticals. 2018;10(4): 36–40. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=36834674

Garcìa-Carreño F. L. The digestive proteases of langostilla (pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their compositionю Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1992;103: 575–578. https://doi.org/10.1016/0305-0491(92)90373-Y

Sabirova A. R., Rudakova N. L., Balaban N. P., … Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters. 2010;584 (21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049

Olshannikova S. S., Malykhina N. V., Lavlinskaya M. S., … Artyukhov V. G. Novel immobilized biocatalysts based on cysteine proteases bound to 2-(4-acetamido-2-sulfanilamide) chitosan and research on their structural features. Polymers. 2022;14: 3223. https://doi.org/10.3390/polym14153223

Burri B., Jacob R. Human metabolism and the requirement for vitamin C. In: Vitamin C in health and disease. Packer L., Fuchs J. (eds.). New York: Marcel Dekker Inc., 1997; 25–58.

Arrigoni O., De Tullio M. C. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta. 2002;1569: 1–9. https://doi.org/10.1016/s0304-4165(01)00235-5

Homaei A. A., Sajedi R. H., Sariri R., Seyfzadeh S., Stevanto R. Cysteine enhances activity and stability of immobilized papain. Amino Acids. 2010;38: 937–942. https://doi.org/10.1007/s00726-009-0302-3

Storer A. C., Menrad R. Chapter 419 – Papain. In: Handbook of Proteolytic Enzymes. Rawlings N. D., Salvesen G. (eds.). Academic Press; 2013. Vol. 2, pp. 1858–1861. https://doi.org/10.1016/b978-0-12-382219-2.00418-x

Kyoichi O., Ohnishi T., Tanaka S. Activation and inhibition of papain. The Journal of Biochemistry. 1962;51(5): 372–374. https://doi.org/10.1093/oxfordjournals.jbchem.a127547

Purr A. The activation phenomena of papain and cathepsin. Biochemical Journal. 1935;29(1): 13–20. https://doi.org/10.1042/bj0290013

Kanazawa H., Fujimoto S., Ohara A. On the mechanism of inactivation of active papain by ascorbic acid in the presence of cupric ions. Biological and Pharmaceutical Bulletin. 1994;17(6): 789–793. https://doi.org/10.1248/bpb.17.789

Rebouche C. J. Ascorbic acid and carnitine biosynthesis. The American Journal of Clinical Nutrition. 1991;54(6): 1147S–1152S. https://doi.org/10.1093/ajcn/54.6.1147s

Carr A. C., Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American Journal of Clinical Nutrition. 1999;69(6): 1086–1107. https://doi.org/10.1093/ajcn/69.6.1086

Gegel N. O., Zudina I. V., Malinkina O. N., Shipovskaya A. B. Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts. Microbiology. 2018;87(5): 732–737. https://doi.org/10.1134/S0026261718050107

Published
2023-05-11
How to Cite
Goncharova, S. S., Redko, Y. A., Lavlinskaya, M. S., Sorokin, A. V., Holyavka, M. G., Kondratyev, M. S., & Artyukhov, V. G. (2023). Biocatalysts based on papain associates with chitosan nanoparticles. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(2), 173-181. https://doi.org/10.17308/kcmf.2023.25/11098
Section
Original articles

Most read articles by the same author(s)