Study of the proteolytic activity of ficin associates with chitosan nanoparticles

  • Svetlana S. Olshannikova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-3381-2008
  • Yulia А. Redko Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Maria S. Lavlinskaya Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation https://orcid.org/0000-0001-9058-027X
  • Andrey V. Sorokin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation https://orcid.org/0000-0001-5268-9557
  • Marina G. Holyavka Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation https://orcid.org/0000-0002-1390-4119
  • Nikolay E. Yudin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-5667-0319
  • Valery G. Artyukhov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
Keywords: Nanoparticles, Ficin, Chitosan, Association

Abstract

     The purpose of the research was to develop and study biocatalysts based on ficin associates with chitosan nanoparticles. We obtained medium and high molecular weight chitosan nanoparticles with the addition of ascorbic acid and without it.The zeta potential of all types of nanoparticles was 0 mV. The associates of ficin and chitosan nanoparticles formed with the addition of ascorbic acid exhibited higher proteolytic activity. While determining the stability of the associates of chitosan and ficin nanoparticles, we noticed a decrease in the proteolytic activity of the samples within seven days. Medium and high molecular weight chitosan nanoparticles obtained using ascorbic acid differed significantly in size from the nanoparticles produced without ascorbic acid. The proposed biocatalysts have high prospects for use in cosmetology,
biomedicine, and pharmacy.

Downloads

Download data is not yet available.

Author Biographies

Svetlana S. Olshannikova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

post-graduate student
of the Biophysics and Biotechnology Department of
Voronezh State University (Voronezh, Russian
Federation)

Yulia А. Redko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

bachelor of the Biophysics and
Biotechnology Department of Voronezh State
University (Voronezh, Russian Federation)

Maria S. Lavlinskaya, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation

Cand. Sci. (Chem.), Senior
Researcher of the Biophysics and Biotechnology
Department of Voronezh State University (Voronezh,
Russian Federation); Senior Researcher of the
Bioresource Potential of the Seaside Territory
Laboratory, Sevastopol State University (Sevastopol,
Russian Federation)

Andrey V. Sorokin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation

post-graduate student of the
Polymer Science and Colloid Chemistry Department,
Junior Researcher of the Biophysics and Biotechnology
Department of Voronezh State University (Voronezh,
Russian Federation); Junior Researcher of the
Bioresource Potential of the Seaside Territory
Laboratory, Sevastopol State University (Sevastopol,
Russian Federation)

Marina G. Holyavka, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya ul., Sevastopol 299053, Russian Federation

Dr. Sci. (Biology), Docent,
Professor of the Biophysics and Biotechnology
Department, Senior Researcher of the Biochemistry
and Cell Physiology Department of Voronezh State
University (Voronezh, Russian Federation); Professor
of the Physics Department, Leading Researcher of the
Molecular Substance Structure Research Core Center
of Sevastopol State University (Sevastopol, Russian
Federation)

Nikolay E. Yudin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

master student of Polymer
Science and Colloid Chemistry Department of
Voronezh State University (Voronezh, Russian
Federation)

Valery G. Artyukhov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Biology), Full
Professor, Head of the Biophysics and Biotechnology
Department, Senior Researcher of the Biochemistry
and Cell Physiology of Voronezh State University
(Voronezh, Russian Federation)

References

Murthy S. K. Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine. 2007;2(2): 129–141. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673971/

Parak W. J., Gerion D., Pellegrino T., Zanchet D., Micheel C., Williams C. S., Boudreau R., Le Gros M. A., Larabell C. A., Alivisatos A. P. Biological applications of colloidal nanocrystals. Nanotechnology. 2003;14: R15-R27. https://doi.org/10.1088/0957-4484/14/7/201

Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics Series D: Applied Physics. 2003;36: R167–R181. https://doi.org/10.1088/0022-3727/36/13/201

Whitesides G. M. The ‘right’ size in Nanobiotechnology. Nature Biotechnology. 2003;21: 1161–1165. https://doi.org/10.1038/nbt872

Xiong M.-H., Bao Y., Yang X.-Zh., Zhu Ya.-H., Wang J. Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews. 2014;78: 63–76. https://doi.org/10.1016/j.addr.2014.02.002

Danhier F., Ansorenav E., Silva J. M., Coco R., Le Breton A., Préat V. PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release. 2012;161(2): 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043

Egebro Birk S., Boisen A., Hagner Nielsen L. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews. 2021;174: 30–52. https://doi.org/10.1016/j.addr.2021.04.005

Misra R., Acharya S., Dilnawaz F., Sahoo S. K. Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(e-caprolactone) nanoparticles. Nanomedicine. 2009;4(5): 519–530. https://doi.org/10.2217/nnm.09.28

Cheung R., Ng T., Wong J., Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015;13: 5156–5186. https://doi.org/10.3390/md13085156

Osman R., Kan P. L., Awad G., Mortada N., El-Shamy A. E., Alpar O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. International Journal of Pharmaceutics. 2013;449: 44–58. https://doi.org/10.1016/j.ijpharm.2013.04.009

Lehr C. M., Bouwstra J. A., Schacht E. H., Junginger H. E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. International Journal of Pharmaceutics.1992;78: 43–48. https://doi.org/10.1016/0378-5173(92)90353-4

Siar E.-H., Arana-Peña S., Barbosa O., Zidoune M. N., Fernandez-Lafuente R. Immobilization/stabilization of ficin extract on glutaraldehyde-activated agarose beads. Variables that control the final stability and activity in protein hydrolyses. Catalysts. 2018;8: 149. https://doi.org/10.3390/catal8040149

Olshannikova S., Koroleva V., Holyavka M., Pashkov A., Artyukhov V. Covalent immobilization of thiol proteinases on chitosan. Chemistry Proceedings. 2020;2(1):7. https://doi.org/10.3390/ECCS2020-07527

Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180

Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091

Holyavka M., Pankova S., Koroleva V., Vyshkvorkina Yu., Lukin A. Kondratyev M., Artyukhov V. Influence of UV radiation on molecular structure and catalytic activity of free and immobilized bromelain, ficin and papain. Journal of Photochemistry and Photobiology B: Biology. 2019;201: 111681. https://doi.org/10.1016/j.jphotobiol.2019.111681

Ribeiro J. S., Barboza A. d. S., Cuevas-Suárez C. E., Silva A. F., Piva E., Lund R. G. Novel in-office peroxide-free tooth-whitening gels: bleaching effectiveness, enamel surface alterations, and cell viability. Scientific Reports. 2020;10: 8. https://doi.org/10.1038/s41598-020-66733-z

Aider M. Potential applications of ficin in theproduction of traditional cheeses and protein hydrolysates. JDS Communications. 2021;2(5): 233–237. https://doi.org/10.3168/jdsc.2020-0073

Morellon-Sterling R., El-Siara H., Tavano O. L., Berenguer-Murcia A., Fernández-Lafuente R. Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules. 2020;162: 394–404. https://doi.org/10.1016/j.ijbiomac.2020.06.144

Szeto Y. S., Hu Z. Method for preparing chitosan nano-particles. Patent No US2008/0234471 A1. Publication Date: 25.09.2008.

Ol’shannikova S. S., Red’ko Y. A., Lavlinskaya, M. S. Sorokin A. V., Holyvka M. G., Artyukhov V. G. Preparation of papain complexes with chitosan microparticles and evaluation of their stability using the enzyme activity level. Pharmaceutical Chemistry Journal. 2022;55: 1240–1244. https://doi.org/10.1007/s11094-022-02564-8

Koroleva V. A., Holyavka M. G., Olshannikova S. S., Artukhov V. G. Formation of ficin complexes with chitosan nanoparticles with a high level of proteolyticactivity. Russian Journal of Biopharmaceuticals. 2018;10(4): 36–40. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=36834674

Garcìa-Carreño F. L. The digestive proteases of langostilla (pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their compositionю Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1992;103: 575–578. https://doi.org/10.1016/0305-0491(92)90373-Y

Sabirova A. R., Rudakova N. L., Balaban N. P., Ilyinskaya O. N., Demidyuk I. V., Kostrov S. V., Rudenskaya G. N., Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Lett. 2010;584 (21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049

Burri B., Jacob R. Human metabolism and the requirement for vitamin C. In: Vitamin C in health and disease. Packer L., Fuchs J. (eds.). New York: Marcel Dekker Inc., 1997; 25-58.

Arrigoni O., De Tullio M. C. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta. 2002;1569: 1–9. https://doi.org/10.1016/s0304-4165(01)00235-5

Published
2022-11-01
How to Cite
Olshannikova, S. S., RedkoY. А., Lavlinskaya, M. S., Sorokin, A. V., Holyavka, M. G., Yudin, N. E., & Artyukhov, V. G. (2022). Study of the proteolytic activity of ficin associates with chitosan nanoparticles. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 24(4), 523-528. https://doi.org/10.17308/kcmf.2022.24/10556
Section
Original articles

Most read articles by the same author(s)