Исследование протеолитической активности ассоциатов фицина с наночастицами хитозана
Аннотация
Работа направлена на разработку и исследование биокатализаторов на основе ассоциатов фицина с наночастицами хитозана. Получены наночастицы среднемолекулярного и высокомолекулярного хитозанов без и с добавлением аскорбиновой кислоты. Дзета-потенциал всех типов наночастиц составил 0 мВ. Ассоциаты фицина и наночастиц хитозана, сформированные
с добавлением аскорбиновой кислоты, показали более высокие значения протеолитической активности. При определении стабильности ассоциатов наночастиц хитозана и фицина выявлялось снижение протеолитической активности образцов в течение семи суток. Установлено, что наночастицы средне- и высокомолекулярного хитозанов, полученные в присутствии аскорбиновой кислоты, существенно отличаются по размерам от наночастиц, созданных без аскорбиновой кислоты.
Скачивания
Литература
Murthy S. K. Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine. 2007;2(2): 129–141. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673971/
Parak W. J., Gerion D., Pellegrino T., Zanchet D., Micheel C., Williams C. S., Boudreau R., Le Gros M. A., Larabell C. A., Alivisatos A. P. Biological applications of colloidal nanocrystals. Nanotechnology. 2003;14: R15-R27. https://doi.org/10.1088/0957-4484/14/7/201
Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics Series D: Applied Physics. 2003;36: R167–R181. https://doi.org/10.1088/0022-3727/36/13/201
Whitesides G. M. The ‘right’ size in Nanobiotechnology. Nature Biotechnology. 2003;21: 1161–1165. https://doi.org/10.1038/nbt872
Xiong M.-H., Bao Y., Yang X.-Zh., Zhu Ya.-H., Wang J. Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews. 2014;78: 63–76. https://doi.org/10.1016/j.addr.2014.02.002
Danhier F., Ansorenav E., Silva J. M., Coco R., Le Breton A., Préat V. PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release. 2012;161(2): 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043
Egebro Birk S., Boisen A., Hagner Nielsen L. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews. 2021;174: 30–52. https://doi.org/10.1016/j.addr.2021.04.005
Misra R., Acharya S., Dilnawaz F., Sahoo S. K. Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(e-caprolactone) nanoparticles. Nanomedicine. 2009;4(5): 519–530. https://doi.org/10.2217/nnm.09.28
Cheung R., Ng T., Wong J., Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015;13: 5156–5186. https://doi.org/10.3390/md13085156
Osman R., Kan P. L., Awad G., Mortada N., El-Shamy A. E., Alpar O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. International Journal of Pharmaceutics. 2013;449: 44–58. https://doi.org/10.1016/j.ijpharm.2013.04.009
Lehr C. M., Bouwstra J. A., Schacht E. H., Junginger H. E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. International Journal of Pharmaceutics.1992;78: 43–48. https://doi.org/10.1016/0378-5173(92)90353-4
Siar E.-H., Arana-Peña S., Barbosa O., Zidoune M. N., Fernandez-Lafuente R. Immobilization/stabilization of ficin extract on glutaraldehyde-activated agarose beads. Variables that control the final stability and activity in protein hydrolyses. Catalysts. 2018;8: 149. https://doi.org/10.3390/catal8040149
Olshannikova S., Koroleva V., Holyavka M., Pashkov A., Artyukhov V. Covalent immobilization of thiol proteinases on chitosan. Chemistry Proceedings. 2020;2(1):7. https://doi.org/10.3390/ECCS2020-07527
Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180
Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091
Holyavka M., Pankova S., Koroleva V., Vyshkvorkina Yu., Lukin A. Kondratyev M., Artyukhov V. Influence of UV radiation on molecular structure and catalytic activity of free and immobilized bromelain, ficin and papain. Journal of Photochemistry and Photobiology B: Biology. 2019;201: 111681. https://doi.org/10.1016/j.jphotobiol.2019.111681
Ribeiro J. S., Barboza A. d. S., Cuevas-Suárez C. E., Silva A. F., Piva E., Lund R. G. Novel in-office peroxide-free tooth-whitening gels: bleaching effectiveness, enamel surface alterations, and cell viability. Scientific Reports. 2020;10: 8. https://doi.org/10.1038/s41598-020-66733-z
Aider M. Potential applications of ficin in theproduction of traditional cheeses and protein hydrolysates. JDS Communications. 2021;2(5): 233–237. https://doi.org/10.3168/jdsc.2020-0073
Morellon-Sterling R., El-Siara H., Tavano O. L., Berenguer-Murcia A., Fernández-Lafuente R. Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules. 2020;162: 394–404. https://doi.org/10.1016/j.ijbiomac.2020.06.144
Szeto Y. S., Hu Z. Method for preparing chitosan nano-particles. Patent No US2008/0234471 A1. Publication Date: 25.09.2008.
Ol’shannikova S. S., Red’ko Y. A., Lavlinskaya, M. S. Sorokin A. V., Holyvka M. G., Artyukhov V. G. Preparation of papain complexes with chitosan microparticles and evaluation of their stability using the enzyme activity level. Pharmaceutical Chemistry Journal. 2022;55: 1240–1244. https://doi.org/10.1007/s11094-022-02564-8
Koroleva V. A., Holyavka M. G., Olshannikova S. S., Artukhov V. G. Formation of ficin complexes with chitosan nanoparticles with a high level of proteolyticactivity. Russian Journal of Biopharmaceuticals. 2018;10(4): 36–40. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=36834674
Garcìa-Carreño F. L. The digestive proteases of langostilla (pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their compositionю Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1992;103: 575–578. https://doi.org/10.1016/0305-0491(92)90373-Y
Sabirova A. R., Rudakova N. L., Balaban N. P., Ilyinskaya O. N., Demidyuk I. V., Kostrov S. V., Rudenskaya G. N., Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Lett. 2010;584 (21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049
Burri B., Jacob R. Human metabolism and the requirement for vitamin C. In: Vitamin C in health and disease. Packer L., Fuchs J. (eds.). New York: Marcel Dekker Inc., 1997; 25-58.
Arrigoni O., De Tullio M. C. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta. 2002;1569: 1–9. https://doi.org/10.1016/s0304-4165(01)00235-5
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.