Biocatalysts based on complexes of carbon nanomaterials with cysteine proteases

  • Svetlana S. Goncharova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-3381-2008
  • Ekaterina A. Shchegolevatykh Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6861-4776
  • Dmitry A. Zhukalin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-0754-4989
  • Marina G. Holyavka Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya str., Sevastopol 299053, Russian Federation https://orcid.org/0000-0002-1390-4119
  • Valery G. Artyukhov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
Keywords: Cysteine proteases, Ficin, Papain, Bromelain, Fullerenes, Carbon nanotubes

Abstract

    The purpose of the research is to develop and study biocatalysts based on complexes of cysteine proteases with fullerenes and carbon nanotubes.
    During the formation of ficin complexes with fullerenes and carbon nanotubes, the activity of hybrid preparations was 70 and 45%, respectively. During the formation of papain complexes with fullerenes and carbon nanotubes, the proteolytic ability of the enzyme remained at the same level for the samples with fullerene and decreased by 27% for the preparations with carbon nanotubes. The formation of bromelain complexes with fullerenes and carbon nanotubes contributed to a decrease in the proteolytic activity of the biocatalyst by 18 and 48% as compared to the free enzyme. While determining the stability of complexes of nanomaterials and cysteine proteases during a 7-day incubation in 0.05 M tris-HCl buffer (pH 7.5) at 37 °C, we noticed a decrease in the proteolytic activity of the samples.
    Complexation with carbon nanoparticles and fullerenes increased the stability of ficin and bromelain, while the stability of papain in the complexes remained unchanged

Downloads

Download data is not yet available.

Author Biographies

Svetlana S. Goncharova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Junior Researcher of the Department of Biophysics and Biotechnology,
Voronezh State University (Voronezh, Russian Federation)

Ekaterina A. Shchegolevatykh, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student of the Department of Biophysics and Biotechnology,
Voronezh State University (Voronezh, Russian Federation)

Dmitry A. Zhukalin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Associate Professor of the Department of Physics of
Semiconductors and Microelectronics, Voronezh State
University (Voronezh, Russian Federation)

Marina G. Holyavka, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Sevastopol State University, 33 Universitetskaya str., Sevastopol 299053, Russian Federation

Dr. Sci. (Biology), Professor,
Department of Biophysics and Biotechnology,
Voronezh State University (Voronezh, Russian
Federation), Professor of Physics Department,
Sevastopol State University (Sevastopol, Russian
Federation)

Valery G. Artyukhov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Biology), Professor,
Head of the Biophysics and Biotechnology Department,
Voronezh State University (Voronezh, Russian
Federation)

References

Dumpis M. A., Nikolaev D. N., Litasova E. V., Ilyin V. V., Brusina M. A., Piotrovsky L. B. Biological activity of fullerenes - realities and prospects. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(1): 4–20. (In Russ., abstract in Eng.). https://doi.org/10.17816/RCF1614-20

Churilov G. N., Vnukova N. G., Dudnik A. I., … Samoylova N. A. A method and apparatus for highthroughput controlled synthesis of fullerenes and endohedral metal fullerenes. Technical Physics Letters. 2016;42(5): 475–477. https://doi.org/10.1134/S1063785016050072

Melker A. I., Krupina M. A., Matvienko A. N. Nucleation and growth of fullerenes and nanotubes having three-fold t-symmetry. Frontier Materials & Technologies. 2022; 2: 37–53. https://doi.org/10.18323/2782-4039-2022-2-37-53

Zhukalin D. A., Tuchin A. V., Goloshchapov D. L., Bityutskaya L. A. Formation of nanostructures from colloidal solutions of silicon dioxide and carbon nanotubes. Technical Physics Letters. 2015;41(2): 157–159. https://doi.org/10.1134/S1063785015020297

Postnov V. N., Rodinkov O. V., Moskvin L. N., Novikov A. G., Bugaichenko A. S., Krokhina O. A. From carbon nanostructures to highly efficient sorbents for chromatographic separation and concentration. Advances in Chemistry. 2016;85(2): 115–138. https://doi.org/10.1070/RCR4551

Rašović I. Water-soluble fullerenes for medical applications. Materials Science and Technology. 2017;33(7): 777–794. https://doi.org/10.1080/02670836.2016.1198114

Krishna V., Singh A., Sharma P., … Moudgil B. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy. Small. 2010;6(20): 2236–2241. https://doi.org/10.1002/smll.201000847

Chen Z., Ma L., Liu Y., Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3): 238–250. https://doi.org/10.7150/thno.3509

Bryantsev Ya. A., Arhipov V. E., Romanenko A. I., Berdinsky A. S., Okotrub A. V. Control conductance of single walled carbon nanotubes films during synthesis. Journal of Siberian Federal Universit. Mathematics and Physics. 2018; 11(2): 222–226. https://doi.org/10.17516/1997-1397-2018-11-2-222-226

Dvuzhilova Y. V., Dvuzhilov I. S., Belonenko M. B. Three-dimensional light bullets in an optically anisotropic photonic crystal with carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics. 2022;86(1): 46–49. https://doi.org/10.3103/S1062873822010087

De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119): 535–539. https://doi.org/10.1126/science.1222453

Zare Y., Rhee K. Y. Modeling of the interfacial stress transfer parameter for polymer/carbon nanotube nanocomposites. Fizicheskaya Mezomekhanika. 2020;23(2): 94–99. https://doi.org/10.24411/1683-805X-2020-12010

Ahmad A., Kholoud M. M., Abou E., Reda A. A., Abdulrahman A. W. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian Journal of Chemistry. 2012;5(1): 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

Ibrahim K. S. Carbon nanotubes-properties and applications: a review. Carbon Letters. 2013;14(3): 131–144. https://doi.org/10.5714/cl.2013.14.3.131

Holyavka M., Faizullin Dzh., Koroleva V., … Artyukhov V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. International Journal of Biological Macromolecules. 2021;180: 161–176. https://doi.org/10.1016/j.ijbiomac.2021.03.016

Ol’shannikova S. S. , Holyavka M. G. , Artyukhov V. G. Method development for ficin entrapment into gels based on food-grade chitosan and chitosan succinate. Pharmaceutical Chemistry Journal. 2021;54(10): 1067–1070. https://doi.org/10.1007/s11094-021-02321-3

Silva M. Z. R., Oliveira J. P. B., Ramos M. V., … Freitas C. D. T. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chemistry. 2020;307: 125574. https://doi.org/10.1016/j.foodchem.2019.125574

Sun Y., Pan Y, Jiang W., … Zhou L. The inhibitory effects of ficin on streptococcus mutans biofilm formation. Biomed Research International. 2021;2021: 11. https://doi.org/10.1155/2021/6692328

Hamed M. B., El-Badry M. O., Fahmy A. S., Kandil E. I., Borai I. H. A contradictory action of procoagulant ficin by a fibrinolytic serine protease from Egyptian Ficus carica latex. Biotechnology Reports. 2020;27: e00492. https://doi.org/10.1016/j.btre.2020.e00492

Uba G., Manogaran M., Shukor M. Y. A., Gunasekaran B., Halmi M. I. E. Improvement of ficinbased inhibitive enzyme assay for toxic metals using response surface methodology and its application for near real-time monitoring of mercury in marine waters. International Journal of Environmental Research and Public Health. 2020;17(22): 1–15. https://doi.org/10.3390/ijerph17228585

Olshannikova S., Koroleva V., Holyavka M., Pashkov A., Artyukhov V. Covalent Immobilization of Thiol Proteinases on Chitosan. The 1st International Electronic Conference on Catalysis Sciences. 2020;2(1): 7. https://doi.org/10.3390/ECCS2020-07527

Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180

McKerrow J. H. The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLOS Neglected Tropical Diseases. 2018;12(8): e0005639. https://doi.org/10.1371/journal.pntd.0005639

Rieder A. S., Deniz B. F., Netto C. A., Wyse A. T. S. A review of in silico research, SARS-CoV-2, and neurodegeneration: focus on papain-like protease. Neurotoxicity Research. 2022;40(5): 1553–1569. https://doi.org/10.1007/s12640-022-00542-2

Sokolova R. S. Papain medication of hemophthalmos. The Russian Annals of Ophthalmology. 1976;92(4): 54–56. (In Russ.)

Semashko T. A., Lysogorskaya E. N., Oksenoit E. S., Bacheva A. V., Filippova I. Yu. Chemoenzymatic synthesis of

new fluorogenous substrates for cysteine proteases of the papain family. Russian Journal of Bioorganic Chemistry. 2008;34(3): 339–343. https://doi.org/10.1134/S1068162008030151

Rinaldi F., Tengattini S., … Peters B. Monolithic papain-immobilized enzyme reactors for automated structural characterization of monoclonal antibodies. Frontiers in Molecular Biosciences. 2021;8: 765683. https://doi.org/10.3389/fmolb.2021.765683

Pankova S. M., Sakibaev F. A., Holyavka M. G., Artyukhov V. G. A possible role of charged amino-acid clusters n the surface of cysteine proteases for preserving activity when binding with polymers Biophysics. 2022;67(1): 8–14. https://doi.org/10.1134/S0006350922010146

Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091

Koroleva V. A. , Olshannikova S. S. , Holyavka M. G., Artyukhov V. G. Thermal inactivation of cysteine proteases:he key stages. Biophysics. 2021;66(3): 364–372. https://doi.org/10.1134/S0006350921030088

Ribeiro J. S., Barboza A. da S., Cuevas-Suárez C. E., da Silva A. F., Piva E., Lund R. G. Novelin-office peroxide-free tooth-whitening gels: bleaching effectiveness, enamel surface alterations, and cell viability. Scientific Reports. 2020;10: 8. https://doi.org/10.1038/s41598-020-66733-z

Aider M. Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Communications. 2021;2(5): 233–237. https://doi.org/10.3168/jdsc.2020-

Ebrahimian M., Hashemi M., Mahvelati F., Malaekeh-Nikouei B., Hashemi E., Oroojalian F. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: formulation and characterization. Applied Biochemistry and Biotechnology. 2022;194: 3733–3748. https://doi.org/10.1007/s12010-022-03812-z

Kumar R., Sharma N., Khurana N., Singh S. K., Satija S., Mehta M., Vyas M. Pharmacological evaluation of bromelain in mouse model of Alzheimer’s disease. NeuroToxicology. 2022;90: 19–34. https://doi.org/10.1016/j.neuro.2022.02.009

Ma X., Chen Z., Li C., … Lin F. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids and Surfaces B: Biointerfaces. 2022;210: 112251. https://doi.org/10.1016/j.colsurfb.2021.112251

Smirnova N. N., Pokryshkina A. S., Smirnov K. V. Immobilization of reactive dyes on the surface of ultrafiltration membranes based on poly-mphenylenisophthalamide. ChemChemTech. 2022;65(1): 30–37. https://doi.org/10.6060/ivkkt.20226501.6378

Ol’shannikova S. S., Red’ko Y. A., Lavlinskaya M. S. Sorokin A. V., Holyvka M. G., Artyukhov V. G. Preparation of papain complexes with chitosan microparticles and evaluation of their stability using the enzyme activity level. Pharmaceutical Chemistry Journal. 2022;55: 1240–1244. https://doi.org/10.1007/s11094-022-02564-8

Sabirova A. R., Rudakova N. L., Balaban N. P., … Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters. 2010;584(21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049

Published
2023-07-07
How to Cite
Goncharova, S. S., Shchegolevatykh, E. A., Zhukalin, D. A., Holyavka, M. G., & Artyukhov, V. G. (2023). Biocatalysts based on complexes of carbon nanomaterials with cysteine proteases. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(3), 343-349. https://doi.org/10.17308/kcmf.2023.25/11257
Section
Original articles

Most read articles by the same author(s)