Biocatalysts based on complexes of carbon nanomaterials with cysteine proteases
Abstract
The purpose of the research is to develop and study biocatalysts based on complexes of cysteine proteases with fullerenes and carbon nanotubes.
During the formation of ficin complexes with fullerenes and carbon nanotubes, the activity of hybrid preparations was 70 and 45%, respectively. During the formation of papain complexes with fullerenes and carbon nanotubes, the proteolytic ability of the enzyme remained at the same level for the samples with fullerene and decreased by 27% for the preparations with carbon nanotubes. The formation of bromelain complexes with fullerenes and carbon nanotubes contributed to a decrease in the proteolytic activity of the biocatalyst by 18 and 48% as compared to the free enzyme. While determining the stability of complexes of nanomaterials and cysteine proteases during a 7-day incubation in 0.05 M tris-HCl buffer (pH 7.5) at 37 °C, we noticed a decrease in the proteolytic activity of the samples.
Complexation with carbon nanoparticles and fullerenes increased the stability of ficin and bromelain, while the stability of papain in the complexes remained unchanged
Downloads
References
Dumpis M. A., Nikolaev D. N., Litasova E. V., Ilyin V. V., Brusina M. A., Piotrovsky L. B. Biological activity of fullerenes - realities and prospects. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(1): 4–20. (In Russ., abstract in Eng.). https://doi.org/10.17816/RCF1614-20
Churilov G. N., Vnukova N. G., Dudnik A. I., … Samoylova N. A. A method and apparatus for highthroughput controlled synthesis of fullerenes and endohedral metal fullerenes. Technical Physics Letters. 2016;42(5): 475–477. https://doi.org/10.1134/S1063785016050072
Melker A. I., Krupina M. A., Matvienko A. N. Nucleation and growth of fullerenes and nanotubes having three-fold t-symmetry. Frontier Materials & Technologies. 2022; 2: 37–53. https://doi.org/10.18323/2782-4039-2022-2-37-53
Zhukalin D. A., Tuchin A. V., Goloshchapov D. L., Bityutskaya L. A. Formation of nanostructures from colloidal solutions of silicon dioxide and carbon nanotubes. Technical Physics Letters. 2015;41(2): 157–159. https://doi.org/10.1134/S1063785015020297
Postnov V. N., Rodinkov O. V., Moskvin L. N., Novikov A. G., Bugaichenko A. S., Krokhina O. A. From carbon nanostructures to highly efficient sorbents for chromatographic separation and concentration. Advances in Chemistry. 2016;85(2): 115–138. https://doi.org/10.1070/RCR4551
Rašović I. Water-soluble fullerenes for medical applications. Materials Science and Technology. 2017;33(7): 777–794. https://doi.org/10.1080/02670836.2016.1198114
Krishna V., Singh A., Sharma P., … Moudgil B. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy. Small. 2010;6(20): 2236–2241. https://doi.org/10.1002/smll.201000847
Chen Z., Ma L., Liu Y., Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3): 238–250. https://doi.org/10.7150/thno.3509
Bryantsev Ya. A., Arhipov V. E., Romanenko A. I., Berdinsky A. S., Okotrub A. V. Control conductance of single walled carbon nanotubes films during synthesis. Journal of Siberian Federal Universit. Mathematics and Physics. 2018; 11(2): 222–226. https://doi.org/10.17516/1997-1397-2018-11-2-222-226
Dvuzhilova Y. V., Dvuzhilov I. S., Belonenko M. B. Three-dimensional light bullets in an optically anisotropic photonic crystal with carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics. 2022;86(1): 46–49. https://doi.org/10.3103/S1062873822010087
De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119): 535–539. https://doi.org/10.1126/science.1222453
Zare Y., Rhee K. Y. Modeling of the interfacial stress transfer parameter for polymer/carbon nanotube nanocomposites. Fizicheskaya Mezomekhanika. 2020;23(2): 94–99. https://doi.org/10.24411/1683-805X-2020-12010
Ahmad A., Kholoud M. M., Abou E., Reda A. A., Abdulrahman A. W. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian Journal of Chemistry. 2012;5(1): 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022
Ibrahim K. S. Carbon nanotubes-properties and applications: a review. Carbon Letters. 2013;14(3): 131–144. https://doi.org/10.5714/cl.2013.14.3.131
Holyavka M., Faizullin Dzh., Koroleva V., … Artyukhov V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. International Journal of Biological Macromolecules. 2021;180: 161–176. https://doi.org/10.1016/j.ijbiomac.2021.03.016
Ol’shannikova S. S. , Holyavka M. G. , Artyukhov V. G. Method development for ficin entrapment into gels based on food-grade chitosan and chitosan succinate. Pharmaceutical Chemistry Journal. 2021;54(10): 1067–1070. https://doi.org/10.1007/s11094-021-02321-3
Silva M. Z. R., Oliveira J. P. B., Ramos M. V., … Freitas C. D. T. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chemistry. 2020;307: 125574. https://doi.org/10.1016/j.foodchem.2019.125574
Sun Y., Pan Y, Jiang W., … Zhou L. The inhibitory effects of ficin on streptococcus mutans biofilm formation. Biomed Research International. 2021;2021: 11. https://doi.org/10.1155/2021/6692328
Hamed M. B., El-Badry M. O., Fahmy A. S., Kandil E. I., Borai I. H. A contradictory action of procoagulant ficin by a fibrinolytic serine protease from Egyptian Ficus carica latex. Biotechnology Reports. 2020;27: e00492. https://doi.org/10.1016/j.btre.2020.e00492
Uba G., Manogaran M., Shukor M. Y. A., Gunasekaran B., Halmi M. I. E. Improvement of ficinbased inhibitive enzyme assay for toxic metals using response surface methodology and its application for near real-time monitoring of mercury in marine waters. International Journal of Environmental Research and Public Health. 2020;17(22): 1–15. https://doi.org/10.3390/ijerph17228585
Olshannikova S., Koroleva V., Holyavka M., Pashkov A., Artyukhov V. Covalent Immobilization of Thiol Proteinases on Chitosan. The 1st International Electronic Conference on Catalysis Sciences. 2020;2(1): 7. https://doi.org/10.3390/ECCS2020-07527
Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180
McKerrow J. H. The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLOS Neglected Tropical Diseases. 2018;12(8): e0005639. https://doi.org/10.1371/journal.pntd.0005639
Rieder A. S., Deniz B. F., Netto C. A., Wyse A. T. S. A review of in silico research, SARS-CoV-2, and neurodegeneration: focus on papain-like protease. Neurotoxicity Research. 2022;40(5): 1553–1569. https://doi.org/10.1007/s12640-022-00542-2
Sokolova R. S. Papain medication of hemophthalmos. The Russian Annals of Ophthalmology. 1976;92(4): 54–56. (In Russ.)
Semashko T. A., Lysogorskaya E. N., Oksenoit E. S., Bacheva A. V., Filippova I. Yu. Chemoenzymatic synthesis of
new fluorogenous substrates for cysteine proteases of the papain family. Russian Journal of Bioorganic Chemistry. 2008;34(3): 339–343. https://doi.org/10.1134/S1068162008030151
Rinaldi F., Tengattini S., … Peters B. Monolithic papain-immobilized enzyme reactors for automated structural characterization of monoclonal antibodies. Frontiers in Molecular Biosciences. 2021;8: 765683. https://doi.org/10.3389/fmolb.2021.765683
Pankova S. M., Sakibaev F. A., Holyavka M. G., Artyukhov V. G. A possible role of charged amino-acid clusters n the surface of cysteine proteases for preserving activity when binding with polymers Biophysics. 2022;67(1): 8–14. https://doi.org/10.1134/S0006350922010146
Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091
Koroleva V. A. , Olshannikova S. S. , Holyavka M. G., Artyukhov V. G. Thermal inactivation of cysteine proteases:he key stages. Biophysics. 2021;66(3): 364–372. https://doi.org/10.1134/S0006350921030088
Ribeiro J. S., Barboza A. da S., Cuevas-Suárez C. E., da Silva A. F., Piva E., Lund R. G. Novelin-office peroxide-free tooth-whitening gels: bleaching effectiveness, enamel surface alterations, and cell viability. Scientific Reports. 2020;10: 8. https://doi.org/10.1038/s41598-020-66733-z
Aider M. Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Communications. 2021;2(5): 233–237. https://doi.org/10.3168/jdsc.2020-
Ebrahimian M., Hashemi M., Mahvelati F., Malaekeh-Nikouei B., Hashemi E., Oroojalian F. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: formulation and characterization. Applied Biochemistry and Biotechnology. 2022;194: 3733–3748. https://doi.org/10.1007/s12010-022-03812-z
Kumar R., Sharma N., Khurana N., Singh S. K., Satija S., Mehta M., Vyas M. Pharmacological evaluation of bromelain in mouse model of Alzheimer’s disease. NeuroToxicology. 2022;90: 19–34. https://doi.org/10.1016/j.neuro.2022.02.009
Ma X., Chen Z., Li C., … Lin F. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids and Surfaces B: Biointerfaces. 2022;210: 112251. https://doi.org/10.1016/j.colsurfb.2021.112251
Smirnova N. N., Pokryshkina A. S., Smirnov K. V. Immobilization of reactive dyes on the surface of ultrafiltration membranes based on poly-mphenylenisophthalamide. ChemChemTech. 2022;65(1): 30–37. https://doi.org/10.6060/ivkkt.20226501.6378
Ol’shannikova S. S., Red’ko Y. A., Lavlinskaya M. S. Sorokin A. V., Holyvka M. G., Artyukhov V. G. Preparation of papain complexes with chitosan microparticles and evaluation of their stability using the enzyme activity level. Pharmaceutical Chemistry Journal. 2022;55: 1240–1244. https://doi.org/10.1007/s11094-022-02564-8
Sabirova A. R., Rudakova N. L., Balaban N. P., … Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters. 2010;584(21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.