Биокатализаторы на основе ассоциатов папаина с наночастицами хитозана
Аннотация
Работа направлена на разработку и исследование биокатализаторов на основе ассоциатов папаина с наночастицами хитозана. Получены наночастицы среднемолекулярного и высокомолекулярного хитозанов без и с добавлением аскорбиновой кислоты.
При образовании ассоциатов папаина с наночастицами, сформированными в присутствии аскорбиновой кислоты,
его каталитическая способность увеличилась на 3 % для среднемолекулярного хитозана и на 16 % для
высокомолекулярного хитозана. Свободный фермент после 168 часов инкубации в 0.05 М трис-HCl буфере (рН 7.5) при 37 °С сохранял 15 % каталитической активности, в то время как ассоциаты с наночастицами хитозана проявляли ~ 30 %, а комплекс папаина с наночастицами хитозана, полученными с добавлением аскорбиновой кислоты, – 40 % своей каталитической способности.
Смоделированы связи и взаимодействия, образующиеся внутри комплекса хитозан-аскорбиновая кислота-папаин.
Предлагаемые нами биокатализаторы обладают высокими возможностями для эффективного использования в
области косметологии, биомедицины и фармации
Скачивания
Литература
Hillaireau H., Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences. 2009,66: 2873–2896. https://doi.org/10.1007/s00018-009-0053-z
Ashurov N. S., Yugai S. M., Shakhobutdinov S. S…. Atakhanov A. A. Physicochemical studies of the structure of chitosan and chitosan ascorbate nanoparticles. Russian Chemical Bulletin. 2022;71: 227–231. https://doi.org/10.1007/s11172-022-3401-x
Medvedeva I. V., Medvedeva O. M., Studenok A. G., Studenok G. A., Tseytlin, E. M. New composite materials and processes for chemical, phisico-chemical and biochemical technologies of water purification. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya Khimicheskaya Tekhnologiya (ChemChemTech). 2022; 66(1): 6–27. https://doi.org/10.6060/ivkkt.20236601.6538
Egebro Birk S., Boisen A., Hagner Nielsen L. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews. 2021;174: 30–52. https://doi.org/10.1016/j.addr.2021.04.005
Maevskaya E. N., Dresvyanina E. N., Shabunin A. S., … Zinoviev E. V. Preparation and study of the properties of hemostatic materials based on chitosan and chitin nanofibrils*. Rossiiskie Nanotekhnologii. 2020;15(4): 493–504. (In Russ.). https://doi.org/10.1134/S199272232004007X
Kolesov S. V., Gurina M. S., Mudarisova R. K. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinamide. Russian Journal of General Chemistry. 2018;88: 1694–1698. https://doi.org/10.1134/S1070363218080224
Cheung R., Ng T., Wong J., Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015;13: 5156–5186. https://doi.org/10.3390/md13085156
Popova E. V., Tikhomirova V. E., Beznos O. V., Grigoriev Yu. V., Chesnokova N. B., Kost O. A. Chitosan nanoparticles – the drug delivery system to the anterior segment of the eye. Moscow University Chemistry Bulletin. 2023;64(2): 141–151. https://doi.org/10.55959/MSU0579-9384-2-2023-64-2-141-151
Silva-López R. E., Gonçalves R. N. Therapeutic proteases from plants: biopharmaceuticals with multiple applications. Journal of Applied Biotechnology & Bioengineering. 2019;6(2): 101–109. https://doi.org/10.15406/jabb.2019.06.00180
Pankova S. M., Sakibaev F. A., Holyavka M. G., Artyukhov V. G. A possible role of charged amino-acid clusters on the surface of cysteine proteases for preserving activity when binding with polymers. Biophysics. 2022;67(1): 8–14. https://doi.org/10.1134/S0006350922010146
Hu R., Chen G., Li Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules. 2020;25(18): 4091. https://doi.org/10.3390/molecules25184091
Koroleva V. A. , Olshannikova S. S. , Holyavka M. G., Artyukhov V. G. Thermal inactivation of cysteine proteases: the key stages. Biophysics. 2021;66(3): 364–372. https://doi.org/10.1134/S0006350921030088
Kong Y. R., Jong Y. X., Balakrishnan M., … Khaw K. Y. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology. 2021;10(4): 20. https://doi.org/10.3390/biology10040287
Semashko T. A., Lysogorskaya E. N., Oksenoit E. S., Bacheva A. V., Filippova I. Yu. Chemoenzymatic synthesis of new fluorogenous substrates for cysteine proteases of the papain family. Russian Journal of Bioorganic Chemistry. 2008;34(3): 339–343. https://doi.org/10.1134/S1068162008030151
Szeto Y. S., Hu Z. Method for preparing chitosan nano-particles. Patent no US2008/0234477 A1. Publ. 25.09.2008.
Olshannikova S.S., Re d ko Yu . A . , Lavlinskaya M. S., Sorokin A. V., Kholyavka M. G., Artyukhov V. G. reparation of papain complexes with chitosan microparticles and evaluation of their stability using the level of enzyme activity. Khimiko-Farmatsevticheskii Zhurnal. 2021;55(11): 51-55. (In Russ., abstract in Eng.). https://doi.org/10.30906/0023-1134-2021-55-11-51-55
Koroleva V. A., Holyavka M. G., Olshannikova S. S., Artyukhov V. G. Formation of ficine complexes with chitozan nanoparticles with a high level of proteolytic activity . Russian Journal of Biopharmaceuticals. 2018;10(4): 36–40. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=36834674
Garcìa-Carreño F. L. The digestive proteases of langostilla (pleuroncodes planipes, decapoda): their partial characterization, and the effect of feed on their compositionю Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1992;103: 575–578. https://doi.org/10.1016/0305-0491(92)90373-Y
Sabirova A. R., Rudakova N. L., Balaban N. P., … Sharipova M. R. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters. 2010;584 (21): 4419–4425. https://doi.org/10.1016/j.febslet.2010.09.049
Olshannikova S. S., Malykhina N. V., Lavlinskaya M. S., … Artyukhov V. G. Novel immobilized biocatalysts based on cysteine proteases bound to 2-(4-acetamido-2-sulfanilamide) chitosan and research on their structural features. Polymers. 2022;14: 3223. https://doi.org/10.3390/polym14153223
Burri B., Jacob R. Human metabolism and the requirement for vitamin C. In: Vitamin C in health and disease. Packer L., Fuchs J. (eds.). New York: Marcel Dekker Inc., 1997; 25–58.
Arrigoni O., De Tullio M. C. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta. 2002;1569: 1–9. https://doi.org/10.1016/s0304-4165(01)00235-5
Homaei A. A., Sajedi R. H., Sariri R., Seyfzadeh S., Stevanto R. Cysteine enhances activity and stability of immobilized papain. Amino Acids. 2010;38: 937–942. https://doi.org/10.1007/s00726-009-0302-3
Storer A. C., Menrad R. Chapter 419 – Papain. In: Handbook of Proteolytic Enzymes. Rawlings N. D., Salvesen G. (eds.). Academic Press; 2013. Vol. 2, pp. 1858–1861. https://doi.org/10.1016/b978-0-12-382219-2.00418-x
Kyoichi O., Ohnishi T., Tanaka S. Activation and inhibition of papain. The Journal of Biochemistry. 1962;51(5): 372–374. https://doi.org/10.1093/oxfordjournals.jbchem.a127547
Purr A. The activation phenomena of papain and cathepsin. Biochemical Journal. 1935;29(1): 13–20. https://doi.org/10.1042/bj0290013
Kanazawa H., Fujimoto S., Ohara A. On the mechanism of inactivation of active papain by ascorbic acid in the presence of cupric ions. Biological and Pharmaceutical Bulletin. 1994;17(6): 789–793. https://doi.org/10.1248/bpb.17.789
Rebouche C. J. Ascorbic acid and carnitine biosynthesis. The American Journal of Clinical Nutrition. 1991;54(6): 1147S–1152S. https://doi.org/10.1093/ajcn/54.6.1147s
Carr A. C., Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. The American Journal of Clinical Nutrition. 1999;69(6): 1086–1107. https://doi.org/10.1093/ajcn/69.6.1086
Gegel N. O., Zudina I. V., Malinkina O. N., Shipovskaya A. B. Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts. Microbiology. 2018;87(5): 732–737. https://doi.org/10.1134/S0026261718050107
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.