Phase relations in the Si–Sn–As system
Abstract
The goal of this work was to study phase relations in the ternary Si–Sn–As system: to establish cross sections, to construct a scheme of phase equilibria, and to identify the temperature of non-variant transformations.
Ternary alloys were obtained through direct synthesis from simple substances and subjected to long-term solid-phase annealing. Alloys of four polythermal sections of the Si–Sn–As system were examined using X-ray phase and differential thermal analysis. The results of X-ray powder diffraction allowed establishing that the phase subsolidus demarcations was performed by the SnAs–SiAs2, SnAs–SiAs, Sn4As3–SiAs, and Sn4As3–Si sections.
As a result of the experiment, taking into account the theoretical analysis, we suggested a scheme of phase equilibria in the system that involved the implementation of eutectic and four peritectic invariant equilibria, and we used differential thermal analysis to determine the temperature of these four-phase transformations.
It was found that extended solid solutions were not formed in the system, and only a substitutional solid solution at least 3 mol % wide was formed based along the SnAs–SiAs2 section based on tin monoarsenide
Downloads
References
Ugai Ya. A., Miroshnichenko S. N., Goncharov E. G. Study of the P-T-x diagram of the Si-As system*. Inorganic Materials. 1974;10(10): 1774–1777. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=29085699
Ugai Ya. A., Popov A. E., Goncharov E. G., Lukin A. N., Samoilov A. M. Electrophysical properties and homogeneity region of germanium arsenide*. Inorganic Materials. 1983;19(2): 190–192. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=29095704
Goncharov E. G., Gladyshev N. F., Ugai Ya. A. Physicochemical nature of intermediate phases in the germanium – arsenic system*. Russian Journal of Inorganic Chemistry. 1977;22(7): 1951–1956. (In Russ.). Available at: https://w w w.eli-brary.ru/item.asp?id=29091830
Goncharov E. G., Popov A. E., Zavrazhnov A. Yu. Semiconducting phosphides and arsenides of silicon and germanium. Inorganic Materials. (In Russ.). 1995;31(5): 579–591. Available at: https://www.elibrary.ru/item.asp?id=29113633
Cheng A-Q., He Z., Zhao J., Zeng H., Chen R-Sh. Monolayered silicon and germanium monopnictide semiconductors: excellent stability, high absorbance, and strain engineering of electronic properties. ACS Applied Materials & Interfaces. 2018;10(6): 5133–5139. https://doi.org/10.1021/acsami.7b17560
Zhou L., Guo Y., Zhao J. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures. Physica E: Low-dimensional Systems and Nanostructures. 2018;95: 149–153. https://doi.org/10.1016/j.physe.2017.08.016
Ramzan M. S., Bacic V., Jing Y., Kuc A. Electronic properties of a new family of layered materials from groups 14 and 15: first-principles simulations. The Journal of Physical Chemistry C. 2019;123(41): 25470–25476. https://doi.org/10.1021/acs.jpcc.9b07068
Barreteau C., Michon B., Besnard C., Giannini E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. Journal of Crystal Growth. 2016;443(1): 75–80. https://doi.org/10.1016/j.jcrysgro.2016.03.019
Reddy P. V. S., Kanchana V., Millichamp T. E., Vaitheeswaran G. , Dugdale S. B. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles. Physica B: Condensed Matter. 2017;505: 33–40. https://doi.org/10.1016/j.physb.2016.10.026
Ma Z., Zhuang J., Zhang X., Zhou Zh. SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Frontiers of Physics. 2018;13(138104). https://doi.org/10.1007/s11467-018-0760-8
Shojaei F., Mortazavi B., Zhuang X., Azizi M. Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): Novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. Materials To day Energy. 2020;16(100377). https://doi.org/10.1016/j.mtener.2019.100377
Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review. Reviews on Advanced Materials Science. 2011;27: 14–24. Available at: https://www.elibrary.ru/item.asp?id=16869557
Kathleen L. Synthesis and characterization of tetrel pnictides and compounds in the lithium-tetrelarsenic system. University of California. Davis ProQuest Dissertations Publishing: 2016. 136 p. Available at: https://www.proquest.com/openview/6c5577b9817fa2c2864fdeda33e2acfb/1?cbl=18750&diss=y&loginDi
splay=true&pq-origsite=gscholar
Woo K. E., Dolyniuk J. A., Kovnir K. Superseding van der Waals with electrostatic interactions: Intercalation of Cs into the interlayer space of SiAs2. Inorganic Chemistry. 2019;58(8): 4997–5005. https://doi.org/10.1021/acs.inorgchem.9b00017
Semenova G. V., Goncharov E. G. Solid solutions with the participation of elements of the fifth group*. Moscow: Izd. MFTI Publ.; 2000. 160 p. (In Russ.) Available at: https://w w w.elibrar y.ru/item.asp?id=25882424
Kononova E. Y., Sinyova S. I., Semenova G. V., Sushkova T. P. Phase equilibria in the Sn–As–Ge and Sn–As–P systems. Journal of Thermal Analysis and Calorimetry. 2014;117(3): 1171–1177. https://doi.org/10.1007/s10973-014-3883-3
Olesinski R. W., Abbaschian G. J. The As−Si (arsenic-silicon) system. Bulletin of Alloy Phase Diagrams. 1985;6(3): 254–258. https://doi.org/10.1007/BF02880410
Gokcen N. A. The As-Sn (tin-arsenic) system. Bulletin of Alloy Phase Diagrams. 1990;11(3): 271–278. https://doi.org/10.1007/BF03029298
Kovnir K., Kolen’ko Y. V., … Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. Journal of Solid State Chemistry. 2009;182(3): 630–639. https://doi.org/10.1016/j.jssc.2008.12.007
Olesinski R. W., Abbaschian G. J. The Si−Sn (silicon−tin) system. Bulletin of Alloy Phase Diagrams; 1984;5: 273–276. https://doi.org/10.1007/BF02868552
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.