Heat capacities and thermal expansion coefficients of iron triad metals

Keywords: Thermodynamic model, Order parameter, Structural rearrangement, Polymorphic transformations, Transition metal

Abstract

    One of the complex problems relating to the thermodynamics of a substance is creating an adequate description of its thermal properties. For example, the Einstein and Debye models (as well as in various modifications of these models) the heat capacity is calculated only when mechanical vibrations of the lattice are taken into account. This leads to the impossibility of describing the increase in heat capacity with increasing temperature for most substances, including iron triad metals. In addition, there is not a single theoretical construction capable of calculating the temperature dependences of the heat capacity and thermal expansion coefficient during polymorphic transformations and structural, magnetic and other phase transitions in the system. They appear on the charts in the form of final jumps, peaks and holes. As a result, there is a need to develop a new approach to the calculation of thermal characteristics. It should take into account the occurrence of local equilibrium in small areas in initially non-equilibrium metal samples for research. The nonequilibrium of a sample can be caused by the presence of impurity atoms, defects, volatile components in it, residual stresses, the occurrence of irreversible processes, etc. For the analytical description of arrays of measured values, experimenters use different exponential expressions in different temperature intervals, sometimes with negative powers. Such theoretical and experimental approaches cannot be considered satisfactory. Therefore, for the creation of the new model, it is necessary to choose such values that would be sensitive to changes in the state of the system. Within the framework of the proposed model of a two-phase locally equilibrium region, such quantities are the absolute temperature of the system, the order parameter in the form of the difference in volume fractions of coexisting ideal phases, the phase composition of the ordering phase, and its derivative with respect to temperature. The developed model allows to calculate the temperature dependences of the heat capacities and coefficients of thermal linear expansion of the iron triad metals (Fe, Co, Ni) with a change in the aggregation state (crystal - liquid), the presence of structural, magnetic and other phase transitions.
    It has been shown that the used expressions adequately describe the experimental data in a wide temperature range, and also allow to extend the plotted curves to experimentally unexplored regions. A possible structural transition in cobalt at a temperature of about 1600 K, the existence of which requires additional experiments, was established. The obtained expressions are distinguished by their simplicity and universality of applicability; they can be used to create an automatic calculation of the thermophysical properties of not only iron triad metals, but also other solid substances

Downloads

Download data is not yet available.

Author Biography

Sergey V. Terekhov, Galkin Donetsk Institute for Physics and Engineering 72 R. Luxembourg st., Donetsk 83114, Russian Federation

Dr. Sci. (Phys.–Math.), Associate Professor, Leading Researcher of the Department of Electronic Properties of Metals, Galkin Donetsk Institute for Physics and Engineering (Donetsk, Russian Federation)

References

Novitsky L. A., Kozhevnikov I. G. Thermophysical properties of materials at low temperatures*. Handbook. Moscow: Mashinostroenie Publ., 1975. 216 p. (in Russ.)

Zinoviev V. E. Thermophysical properties of metals at high temperatures*. Handbook. Moscow: Metallurgiya Publ., 1989. 384 p. (in Russ.)

Dorogokupets P. I., Sokolova, T. S., Litasov K. D. Thermodynamic properties of bcc-Fe to melting temperature and pressure to 15 GPa. Geodynamics & Tectonophysics. 2014:5(4): 1033–1044. https://doi.org/10.5800/gt-2014-5-4-0166

Desai P. D. Thermodynamic properties of iron and silicon. Journal of Physical and Chemical Reference Data. 1986;15(3): 967–983. https://doi.org/10.1063/1.555761

Dinsdale A. T. SGTE data for pure elements. Calphad. 1991;15(4): 317–425. https://doi.org/10.1016/0364-5916(91)90030-n

Chen Q., Sundman B. Modeling of thermodynamic properties for bcc, fcc, liquid, and amorphous iron. Journal of Phase Equilibria. 2001;22(6): 631–644. https://doi.org/10.1007/s11669-001-0027-9

Gamsjäger H., Bugajski J., Gajda T., Lemire R. J., Preis W. Errata for the 2005 review on the chemical thermodynamics of nickel. In: Mompean F. J., Illemassène M. (Eds.) Chemical Thermodynamics. Vol. 6. Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation and Development, North Holland Elsevier Science Publishers B.V., Amsterdam, The Netherlands. Amsterdam: Elsevier, 2005. 616 p. Available at: https://oecd-nea.org/dbtdb/pubs/Errata_Nickel.pdf

Li Z., Mao H., Selleby M. Thermodynamic modeling of pure Co accounting two magnetic states for the Fcc phase. Journal of Phase Equilibria and Diffusion. 2018;39(5): 502–509. https://doi.org/10.1007/s11669-018-0656-x

Bubnova R. S., Filatov S. K. Thermoradiography of polycrystals. Part II. Determination of quantitative characteristics of the thermal expansion tensor*. St. Petersburg: S.-Pb. State University Publ., 2013. 143 p. (in Russ.)

Khodakovsky I. L. About new semi-empirical equations of temperature dependence of heat capacity and volume coefficient of thermal expansion of minerals*. In: Tsekhonya T. I., Sirotkina, E. A. (Eds.). Proceedings of the ASEMPG-2012. Vestnik Otdelenia nauk o Zemle RAN. 2012;4(9): NZ9001. (in Russ.). https://doi.org/10.2205/2012nz_asempg

Saunders N., Miodownik A. P. CALPHAD (calculation of phase diagrams): a comprehensive guide. V. 1. Pergamon: Elsevier Science Ltd, 1998. 479 p. https://doi.org/10.1016/s1470-1804(98)80034-5

Lukas H. L., Fries S. G., Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge: Cambridge University Press The Edinburgh Building, 2007. 313 p.

Gilev S. D. Low-parametric equation of state of aluminum. High Temperature. 2020;58(2): 166–172. https://doi.org/10.1134/s0018151x20020078

Terekhov S. V. Thermodynamic model of a blurred phase transition in the Fe40Ni40P14B6 glass. Physics and High Pressure Technology. 2018;28(1): 54–61. (in Russ.). Available at: https://www.elibrary.ru/item.asp?id=32664811

Terekhov S. V. Blurred phase transition in the Fe40Ni40P14 B6 amorphous alloy: thermodynamics of phases and kinetics of crystallization. Physics and High Pressure Technology. 2019;29(2): 24–39. (in Russ.). Available at: https://www.elibrary.ru/item.asp?id=38479797

Terekhov S. V. Single- and multistage crystallization of amorphous alloys. Physics of Metals and Metallography. 2020;121(7): 664–669. https://doi.org/10.1134/s0031918x20070108

Terehov S. V. Thermal properties of matter within the model of a two-phase system. Physics of the Solid State. 2022;64(8): 1089. https://doi.org/10.21883/pss.2022.08.54631.352

Terehov S. V. Iffuse phase transition and heat capacity of a solid. Physics and High Pressure Technology. 2022;32(2): 36–51. (in Russ.). Available at: https://www.elibrary.ru/item.asp?id=48746674

Terekhov S. V. Heat capacity and thermal expansion of matter*. Handbook. Donetsk: DonFTI im. A. A. Galkina Publ., 2022. 168 p. (in Russ.)

Kubo R. Thermodynamics. North-Holland Publishing Company: 1968. 310 p.

Livshits B. G., Kraposhin V. S., Lipetsky Ya. L. Physical properties of metals and alloys*. Moscow: Metallurgiya Publ., 1980. 320 p. (in Russ.)

Meschter P. J., Wright J. W., Brooks C. R., Kollie T. G. Physical contributions to the heat capacity of Nickel, Journal of Physics and Chemistry of Solids. 1981;42(9): 861–871. https://doi.org/10.1016/0022-3697(81)90174-8

Bodryakov V. Yu. (2020). Isolation of the magnetic contribution to the thermal expansion of nickel at ferromagnetic transformation on the base of analysis of b(CP) correlation dependence. High Temperature. 2020;58(2): 213–217. https://doi.org/10.1134/s0018151x20020042

Kittel C. Elementary solid state physics: A short course. N.Y., London: John Wiley & Sons Publ., 1962. 339 p.

Rolov B. N., Yurkevich V. E. Physics of diffuse phase transitions*. Rostov-on-Don: RGU Publ., 1983. 320 p. (in Russ.)

Aliyev S. A. Blurring of phase transitions in semiconductors and high-temperature superconductors*. Baku: Elm Publ., 2007. 286 p. (in Russ.)

Novikova S. I. Thermal expansion of solid*. Moscow: Nauka Publ., 1974. 292 p. (in Russ.)

Epifanov G. I. Solid state physics*. Moscow: Vysshaya shkola Publ., 1977. 288 p. (in Russ.)

Kingery W. D. Introduction to ceramics. New York: Wiley, 1960. 1065 p.

Terekhov S. V. Thermal changes in the state of metal glasses. Physics and High Pressure Technology. 2020;30(1): 5–16. (in Russ.) Available at: https://www.elibrary.ru/item.asp?id=42627413

Sheludyak Yu. E., Kashporov L. Ya., Malinin L. A., Tsalkov V. N. Thermophysical properties of combustible system components*. Handbook. Moscow: NPO «Informatsiya i tekhniko-ekonomicheskie issledovaniya» Publ., 1992. 184 p. (in Russ.)

Element properties*. Handbook. M. E. Dritz (ed.). Moscow: Metallurgiya, 1985. 672 p. (in Russ.)

Published
2023-07-07
How to Cite
Terekhov, S. V. (2023). Heat capacities and thermal expansion coefficients of iron triad metals. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(3), 406-414. https://doi.org/10.17308/kcmf.2023.25/11265
Section
Original articles