KINETICS OF CATHODIC HYDROGEN EVOLUTION ON MANGANESE MONOSILICIDE IN SULFURIC ACID ELECTROLYTE

Keywords: manganese silicide MnSi, hydrogen evolution reaction, sulfuric acid electrolyte, impedance.

Abstract

Purpose. The purpose of the work is to investigate the kinetics of the hydrogen evolution reaction (h.e.r.) on the MnSi electrode in solutions x M H2SO4 + (0.5 – x) M Na2SO4 (x = 0.5; 0.35; 0.20;0.05).
Methods and methodology. Methods used in the work are polarization and impedance measurements. Тhe research material is manganese silicide MnSi, which was obtained by the Czochralski method. The range of frequencies f (w / 2p) used in impedance measurements is from
20 kHz to 0.02 Hz, the amplitude of the alternating signal is (5–10) mV.
Results. The following results have been obtained. Cathodic polarization curves of the MnSi electrode have two Tafel plots with slopes of 0.17–0.18 V at lg i ≈ –5.3 ... –4.4 and 0.13–0.14 V at lg i ≈ –4.4 ... –3.8. The constant a in the Tafel equation for MnSi is equal to 1.36–1.47 V for the fi rst plot, and 1.12–1.30 V for the second plot. Silicide in sulfuric acid electrolyte refers to materials with high overpotential of hydrogen evolution. Kinetic parameters of h.e.r. (∂ / ∂lg ) , +E icH
(∂ / ∂lg ) + E c H i , (∂ / ∂lg ) + h c H i , (∂lg / ∂lg ) + i c H E , (∂lg / ∂lg ) + i cH h on MnSi are close to theoretical for the slow stage of charge transfer.
The impedance spectra of the MnSi electrode in the studied solutions at lg i ≈ –5.3 ... -3.8 are capacitive semi-circles with an offset center. The impedance spectra are satisfactory (the c2 criterion is ~ 10–4; the error in determining the values of the circuit parameters does not exceed 5 %) described by an equivalent electrical circuit whose Faraday impedance consists of in seriesconnected resistances of charge transfer R1 and a parallel R2C2 chain corresponding to the adsorption of atomic hydrogen on the electrode surface; the impedance of the double-layer capacitance is modeled by the constant phase element CPE1.
The results of determining the values of the parameters R1, R2, C2 of the equivalent circuit and also iR1, iR2 have been analyzed depending on the potential in semi-logarithmic coordinates. 
Conclusions. Conclusions have been made that in the region lg i ≈ –5.3 … –3.8, the experimental values of the slopes , where X = R1, R2, C2, iR1, iR2, are close to the theoretical values of the slopes for the discharge – electrochemical desorption mechanism, in which both stages are irreversible and the transfer coeffi cients of the stages are not equal. Simultaneously with the hydrogen evolution reaction, the hydrogen absorption reaction proceeds with kinetic control; for adsorbed atomic hydrogen the Langmuir adsorption isotherm is performed.

 

 

 

REFERENCES

  1. Rotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.)
  2. Antropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.)
  3. Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107
  4. Vijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7
  5. Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P
  6. Shein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.)
  7. Vigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181
  8. Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. DOI: 10.1016/j.ijhydene.2014.12.076
  9. Kichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.)
  10. Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125
  11. Schalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069
  12. Kuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.)
  13. Samsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.)
  14. Samsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.)
  15. Yamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275.
  16. Lee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403
  17. Neubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602
  18. Sukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.)
  19. Zhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p.
  20. Xu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022
  21. Harrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1
  22. Orazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p.
  23. Kichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.)
  24. Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114
  25. Kichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.)
  26. Kichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194

Downloads

Download data is not yet available.

Author Biographies

Viktoria V. Panteleeva, Perm State University 15 Bukirev str., 614990 Perm, Russian Federation

Dr. Sci. (Chem), Associate Professor, Department of Physical Chemistry, Perm State University, Perm, Russian Federation; e-mail: vikpant@mail.ru. ORCID iD 0000-0002-1506-6665.

Ilya S. Votinov, Perm State University 15 Bukirev str., 614990 Perm, Russian Federation

Master student, Department of Physical Chemistry, Perm State University, Perm, Russian Federation; e-mail: Anatoly173@yandex. ru. ORCID iD 0000-0002-9027-8924

Igor S. Polkovnikov, Perm State University 15 Bukirev str., 614990 Perm, Russian Federation

Master student, Department of Physical Chemistry, Perm State University, Perm, Russian Federation; e-mail: Anatoly173@yandex. ru. ORCID iD 0000-0003-4381-6467.

Anatoliy В. Shein, Perm State University 15 Bukirev str., 614990 Perm, Russian Federation

Dr. Sci. (Chem.), Professor, Head of the Department of Physical Chemistry, Perm State University, Perm, Russian Federation; e-mail: ashein@psu.ru. ORCID iD 0000-0002-2102-0436.


Abstract views: 0
PDF Downloads: 0
Published
2019-09-26
How to Cite
Panteleeva, V., Votinov, I., Polkovnikov, I., & Shein, A. (2019). KINETICS OF CATHODIC HYDROGEN EVOLUTION ON MANGANESE MONOSILICIDE IN SULFURIC ACID ELECTROLYTE. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(3), 432-440. https://doi.org/https://doi.org/10.17308/kcmf.2019.21/1153
Section
Статьи