FORMATION OF NANOSCALE FILMS OF THE (Y2O3–Fe2O3) ON THE MONOCRYSTAL InP

Keywords: yttrium ferrites,, thin films,, precipitation and centrifugation,, heterostructures,, indium phosphide,, thermal oxidation,, pulsed photon processing

Abstract

Purpose. YFeO3 is distinguished by a variety of important practical properties (multiferroic, semiconductor, photocatalyst) in the visible region and others. The economic feasibility of the use of materials based on it is due to the highest prevalence of Yttrium among the entire range of rare-earth elements. New properties may appear in fi lms of the nanoscale thickness range; however, their synthesis by simple, economical, and technologically advanced methods is not an easy task. The purpose of this work was the synthesis of fi lms of nanoscale fi lms (Y2O3–Fe2O3) system on InP monocrystals, the determination of their composition and surface characteristics.
Methods and methodology. Films of the nanoscale thickness range (laser, spectral ellipsometry) of the system (Y2O3-Fe2O3) on monocrystal InP were formed by centrifugation from a nitrate solution. For their primary treatment, thermal annealing (TA) or pulsed photon processing (PPP) methods were used; for the subsequent thermal oxidation of the formed heterostructures, samples without annealing were used. The phase composition was determined by X-ray diffraction analysis (XRD) and the surface characteristics were determined by atomic force (AFM) and scanning tunneling microscopy (STM).
Results. The results of the study demonstrated, that fi lms that were grown without annealing are single-phase and consist of YFe2O4. The fi lms that were thermally annealed at 200 °С for 120 min were two-phase fi lms, and contained YFe2O4 and Fe2O3 with Fe3O4 (X-ray diffraction analysis). The most promising fi lms for further use were fi lms subjected to PPP in the regime of 50 J/cm2 for 0.4 s and thermal oxidation with the process parameters of 450 –550 °С for 10–60 min, in which YFe2O4 and YFeO3 were present. The results of AFM and STM indicated that annealing of samples with deposited layers of ferrite with subsequent thermal oxidation promoted the reduction of the grain size on the surface of the grown fi lm, but increases the average surface roughness compared to unannealed samples.
Conclusions. Nanoscale fi lms of the (Y2O3–Fe2O3) system on monocrystal InP were synthesized by centrifugation, their compositions that correspond to various types of pretreatment and surface characteristics before and after thermal oxidation were established. We concluded that the most promising fi lms for further use were those that underwent IPP or thermal oxidation and contained YFe2O4 and YFeO3. Regulation of the ratio of these phases in the grown fi lms of the nanoscale thickness range on InP opens up the possibility of targeted control of their characteristics.

 

 

SOURCE OF FINANCING
This work was supported by the Russian Foundation for Basic Research (RFBR) grant No. 18-03-00354 a.

 

 

 

REFERENCES

  1. Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P. Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics, 2007, v. 71(11), pp. 1561−1562. https://doi.org/10.3103/S1062873807110263
  2. Fahlman B. Materials Chemistry. Springer Netherlands, 2011, 736 p. DOI: 10.1007/978-94-007-0693-4
  3. Gubin S. P., Koksharov Yu. A., Khomutov G. B., Yurkov G. Yu. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, v. 74 (6), pp. 489–520. https://doi.org/10.1070/RC2005v074n06ABEH000897
  4. Shabanova N. A., Popov V. V., Sarkisov P. D. Khimiya i tekhnologiya nanodispersnykh oksidov [Chemistry and technology of nanodispersed oxides]. M.: IKC Akademkniga Publ., 2007, 309 p. (in Russ.).
  5. Lima H. R. B. R., Nascimento D. S., Sussuchi E. M., Errico F. D., Souza S. O. Synthesis of MgB4O7 and Li2B4O7 crystals by proteic sol-gel and Pechini methods. Journal of Sol-gel Science and Technology, 2017, v. 81(3), pp. 797−805. https://doi.org/10.1007/s10971-016-4249-z
  6. Serrao C. R., Sahu J. R., Athinarayanan S., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics, 2008, v. 104(1), p. 16102. https://doi.org/10.1063/1.2946455
  7. Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rare-earth ferrites from fi rst principles. Physical Review B, 2014, v. 89(20), p. 205122. https://doi.org/10.1103/Phys-RevB.89.205122
  8. Mahalakshmi S., SrinivasaManja K., Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. Journal of Superconductivity and Novel Magnetism, 2014, v. 27(9), pp. 2083–2088. https://doi.org/10.1007/s10948-014-2551-y
  9. Sanchez-Andujar M., Mira J., Rivas J. Enhanced magnetoresistance in the ruddlesden−popper compound Sr3Fe1.5Co0.5O6.67. Journal of Magnetism and Magnetic Material, 2003, v. 263(3), pp. 282−288. https://doi.org/10.1016/S0304-8853(02)01576-7
  10. Khomskii D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. Journal of Magnetism and Magnetic Material, 2006, v. 306(1), pp. 1−8. https://doi.org/10.1016/j.jmmm.2006.01.238
  11. Patel R., Simon C., Weller M. LnSrScO4 (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A2BO4 (K2NiF4) structure types. Journal of Solid State Chemistry, 2007, v. 180, pp. 349−359. https://doi.org/10.1134/S0036023615100162
  12. Popkov V. I., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, v. 85(6), pp. 1370−1375. https://doi.org/10.1134/S0036023615100162
  13. Popkov V. I., Izotova S. G., Almjasheva O. V., Schmidt M. P., Gusarov V. V. Features of nanosized YFeO3 formation under heat treatment of glycinenitrate combustion products. Russian Journal of Inorganic Chemistry, 2015, v. 60(10), pp. 1193−1198. https://doi.org/10.1134/S0036023615100162
  14. Chithralekha P., Murugeswari C., Ramachandran K., Srinivasan R. The study on ultrasonic velocities of CoxFe3-xO4 nanoferrofl uid prepared by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 558–560. https://doi.org/10.17586/2220-8054-2016-7-3-558-560
  15. Nguyen A. T., Phan Ph. Nh, Mittova I. Ya., Knurorova M. V., Mittova V. O. The characterization of nanosized ZnFe2O4 material prepared by coprecipitation. Nanosystems: Physics, Chemistry, Mathematics, 2016, v. 7(3), pp. 459–463. https://doi.org/10.17586/2220-8054-2016-7-3-459-463
  16. Lomanova N. A., Ugolkov V. L., Gusarov V. V. Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3 system. Glass Physics and Chemistry, 2007, v. 33(6), pp. 608−612. https://doi.org/10.1134/S1087659607060120
  17. Nguyen A. T., Almjasheva O. V., Mittova I. Ya., Stognei O. V., Soldatenko S. A. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorganic Materials, 2009, v. 45(11), pp. 1392–1397. https://doi.org/10.1134/S002016850
  18. Perrot P. Iron–Oxygen–Yttrium. Ternary Alloy Systems, 2009, v. 11(5), pp. 1–18. https://doi.org/10.1007/978-3-540-70890-2_23
  19. Shiwani Sharma, Saravanan P., Pandey O. P, Vinod V. T. P., Cernic M., Sharma P. Magnetic behaviour of sol–gel driven BiFeO3 thin fi lms with different grain size distribution. Journal of Magnetism and Magnetic Materials, 2016, v. 401, pp. 180–187. https://doi.org/10.1016/j.jmmm.2015.10.035
  20. Nikitin M. P., Vetoshko P. M., Nikitin P. I., Bnjsentsov N. A. Highly sensitive room temperature method of non-invasive in vivo Detection of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, v. 321. pp. 1658−1661. https://doi.org/10.1016/j.jmmm.2009.02.108
  21. Vetoshko P., Skidanov V., Stempkovskiy A. Magnetization distribution near edge of YIG fi lm core in fluxgate magnetometer. Sensor Letters, 2013, v. 11(1), 59−61. https://doi.org/10.1166/sl.2013.2768
  22. Berezhnaya M. V., Mittova I. Y., Viryutina E. L., Perov N. S., Bessalova V. V., Al’myasheva O. V., Nguyen A. T., Mittova V. O. Production of zinc-doped yttrium ferrite nanopowders by the sol–gel method. Russian Journal of Inorganic Chemistry, 2018, v. 63(6), pp. 742−746. https://doi.org/10.1134/S0036023618060049
  23. Berezhnaya M. V., Perov N. S., Almjasheva O. V., Mittova V. O, Nguyen A. T., Mittova I. Ya., Druzhinina L. V., Alekhina Yu. A. Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite. Russian Journal of General Chemistry, 2018, v. 89(3), pp. 480−485. https://doi.org/10.1134/S1070363219030198
  24. Nguyen A. T., Pham Vinh N. T., Nguyen T. Tr. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya., Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite YFe1–xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sciences, 2019, v. 96, p. 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011
  25. Nguyen А. Т., Berezhnay M. V., Pham T. L., Mittova V. O., Vo Q. M., Nguyen T. Tr. L., Do Tr. H., Mittova I. Ya., Viryutina E. L. Synthesis and magnetic characteristics of neodymium ferrite powders with perovskite structure. Russian Journal of Applied Chemistry, 2019, v. 92(4), pp. 498−504. https://doi.org/S1070427219040050
  26. Milyaeva I. A., Perov N. S., Bessalova V. V., Berezhnaya М. V., Mittova V. О., Nguyen A. T., Mittova I. Ya. Synthesis and properties of nanoscale fi lms of the Y2O3–Fe2O3 system on silicon. Nanosystems: physics, chemistry, mathematics, 2018, v. 9(3), pp. 417–423. https://doi.org/10.17586/2220-8054-2018-9-3-417-423
  27. Ievlev V. M. Aktivatsiya tverdofaznykh protsessov izlucheniyem gazorazryadnykh lamp [Activation of solid-phase processes by radiation of gas-discharge lamps]. Russian Chemical Reviews, 2013, v. 82(9), pp. 815−834. https://doi.org/10.1070/RC2013v082n09ABEH004357
  28. JCPDC PCPDFWIN: A Windows Retrieval/Display program for Accessing the ICDD PDF – 2 Data base, International Centre for Diffraction Data, 1997.
  29. Monina L. N. Rentgenografi ya. Kachestvennyy rentgenofazovyy analiz [Roentgenography qualitative X-ray phase analysis], M.: Prospect Publ., 2017, 130 p. (in Russ.).
  30. Tretyakov N. N., Mittova I. Y., Sladkopevtsev B. V., Samsonov A. A., Andreenko S. Y. Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant fi lms. Inorganic Materials, 2017, v. 53(1), pp. 65−71.  https://doi.org/10.1134/S0020168517010174

Downloads

Download data is not yet available.

Author Biographies

Irina Ya. Mittova, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Chem.), Full Professor, Professor of the Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: imittova@mail.ru. ORCID iD 0000-0001-
6919-1683.

Boris V. Sladkopevtsev, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Chem.), Associate Professor of the Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: dp-kmins@yandex.ru. ORCID iD 0000-
0002-0372-1941.

Valentina O. Mittova, Voronezh State Medical University named after N. N. Burdenko 10, Studencheskaya str., 394036 Voronezh, Russian Federation

Cand. Sci. (Biological), Assistant of the Department of Biochemistry, Voronezh State Medical University named after N. N. Burdenko, Voronezh, Russian Federation; e-mail: vmittova@mail.ru. ORCID iD 0000-0002-
9844-8684.

Anh Tien Nguyen, Ho Chi Minh City University of Education Ho Chi Minh City, Vietnam

Cand. Sci. (Chem.), Associate Professor of the Department of Inorganic Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam; e-mail: tienna@hcmue.edu.vn. ORCID iD 0000-0002-4396-0349.

Evgenia I. Kopeychenko, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

postgraduate of the Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: kopejchenko00@mail.ru. ORCID iD 0000-0002-8657-2135

Natalia V. Khoroshikh, Voronezh State Medical University named after N. N. Burdenko 10, Studencheskaya str., 394036 Voronezh, Russian Federation

Cand. Sci. (Med.), Associate Professor of the Department of Obstetrics and Gynecology no. 2, Voronezh State Medical University named after N. N. Burdenko, Voronezh, Russian Federation; e-mail: nvh.vrn2011@yandex.ru. ORCID iD 0000-0001-8955-1113.

Irina A. Varnachkina, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

student of the Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: varnachkina.i@yandex.ru. ORCID iD 0000-0002-8657-2135

Published
2019-09-26
How to Cite
Mittova, I. Y., Sladkopevtsev, B. V., Mittova, V. O., Nguyen, A. T., Kopeychenko, E. I., Khoroshikh, N. V., & Varnachkina, I. A. (2019). FORMATION OF NANOSCALE FILMS OF THE (Y2O3–Fe2O3) ON THE MONOCRYSTAL InP. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(3), 406-418. https://doi.org/10.17308/kcmf.2019.21/1156
Section
Статьи