The effect of sulphur vapour treatment on the speed of InP thermal oxidation, composition, surface morphology, and properties of films

  • Olga S. Tarasova Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Aleksey I. Dontsov Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Boris V. Sladkopevtsev Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Irina Y. Mittova Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
Keywords: indium phosphide,, surface,, sulphur,, nanoscale films,, thermo-oxidation,, modification

Abstract

Purpose. At present, AIIIBV type compounds are considered to be the most promising semiconductors in modern electronics. They are widely used to create high-speed optoelectronic and microelectronic devices. One way to protect the surface of semiconductors is chalcogenide passivation, which to some extent prevents the negative effects of self-oxidation and reduces the density of surface states at the internal interface. The proposed method for modifying the InP surface is the simplest, since it does not require ultra-high vacuum conditions and allows controlling the process parameters. The purpose of this work is to establish the effect of the pre-treatment of the InP surface with sulphur vapours on the oxidation speed, the distribution of components in the fi lm, and the morphological characteristics and electrophysical properties.

Methods and methodology. The modifi cation from the gas phase with sulphur vapour was carried out at the temperature of 170°C for 60 minutes, followed by thermal annealing of the samples for 10 minutes at the temperatures of 280 °C and 360 °C. Thermal oxidation of sulphurmodifi ed InP was carried out at a temperature of 530 °C for 60 minutes.

Results. The modifi cation from the gas phase with sulphur vapour followed by thermal annealing of the samples for 10 minutes at the temperatures of 280 °C and 360 °C results in fi xing of the sulphur layer on the InP surface (the content is about 7 at. %). The study of the kinetic data ofthermal oxidation of sulphur-modifi ed InP established the effect on the growth rate of the formed oxide fi lms. According to the AES data, the sulphur content in the synthesized fi lms was not detected, however, the difference in the distribution profi les of the substrate components and oxygen with the reference indicated the effect of preliminary surface treatment with sulphur on the process of thermal oxidation. The surface morphology of the fi lms formed by thermal oxidation of sulphur-modifi ed InP after annealing at 360 °C improves, which is manifested in an increase in grain order and decrease in fi lm roughness compared to both the controlled and modifi ed InP after annealing at 280 °C.

Conclusions. The modifi cation by sulphur vapour of the InP surface positively affects the parameters of fi lm formation and improves their morphology. Films synthesized by thermal oxidation of surface-modifi ed InP possess semiconductor properties.

 

 

REFERENCES

  1. Markov V. F., Mukhamedzyanov Kh. N., Maskaeva L. N. Materialy sovremennoj jelektroniki [Materials of modern electronics]. Ekaterinburg, Publishing Ural. un-one, 2014, 272 p. (in Russ.)
  2. Oktyabrsky S. Fundamentals of III-V Semiconductor MOSFETs. Springer Science LCC, 2013, 447 p.
  3. Bessolov V. N., Lebedev M. V. Hal’kogenidnaja passivacija poluprovodnikov AIIIBV [Chalcogenide passivation of III–V semiconductor surfaces]. Semiconductors, 1998, v. 32(11), pp. 1141–1156. https://doi.org/10.1134/1.1187580
  4. Mittova I. Ya., Soshnikov M., Terekhov V. A., Semenov V. N. Termicheskoe oksidirovanie geterostruktur V2S5/InP v kislorode [Thermal oxidation of V2S5/InP heterostructures in oxygen]. Inorganic Materials, 2000, v. 36(10), pp. 975–978. https://doi.org/10.1007/BF02757971
  5. Yoshida N., Chichibu S., Akane T., Totsuka M., Uji H., Matsumoto S., Higuchi H. Surface passivation of GaAs using ArF excimer laser in a H2S gas ambient. Applied Physics Letters, 1993, v. 63(22), pp. 3035–3037. https://doi.org/10.1063/1.110250
  6. Liu K. Z., Shimomura M., Fukuda Y. Band Bending of n-GaP(001) and p-InP(001) Surfaces with and without sulfur treatment studied by Photoemission (PES) and Inverse Photoemission Spectroscopy (IPES). Advanced Materials Research, 2011, v. 222, pp. 56–61. https://doi.org/10.4028/www.scientific.net/AMR.222.56
  7. Tian Sh., Wei Zh., Li Y., Zhao H., Fang X. Surface state and optical property of sulfur passivated InP. Materials Science in Semiconductor Processing, 2014, v. 17, pp. 33–37. https://doi.org/10.1016/j.mssp.2013.08.008
  8. Sundararaman C. S., Poulin S., Currie J. F., Leonelli R. The sulfur-passivated InP surface. Canadian Journal of Physics, 2011, v. 69(3–4), pp. 329–332. https://doi.org/10.1139/p91-055
  9. Lau W. M., Kwok R. W. M., Ingrey S. Controlling surface band-bending of InP with polysulfi de treatments. Surface Science, 1992, v. 271(3), pp. 579–586. https://doi.org/10.1016/0039-6028(92)90919-W
  10. Tao Y., Yelon A., Sacher E., Lu Z. H., Graham M. J. S-passivated InP (100)-(1×1) surface prepared by a wet chemical process. Applied Physics Letters, 1992, v. 60(21), pp. 2669–2671. https://doi.org/10.1063/1.106890
  11. Chasse T., Peisert H., Streubel P., Szargan R. Sulfurization of InP(001) surfaces studied by X-ray photoelectron and X-ray induced Auger electron spectroscopies (XPS/XAES). Surface Science, 1995, v. 331–333, pp. 434–440. https://doi.org/10.1016/0039-6028(95)00306-1
  12. Maeyama S., Sugiyama M., Heun S., Oshima M. Electron J. (NH4)2Sx-treated InP(100) surfaces studied by soft x-ray photoelectron spectroscopy. Journal of Electronic Materials, 1996, v. 25(5), pp. 593–596. https://doi.org/10.1007/BF02666509
  13. Sugahara H., Oshima M., Klauser R. Bonding states of chemisorbed sulfur atoms on GaAs. Surface Science, 1991, v. 242(1–3), pp. 335–340. https://doi.org/10.1016/0039-6028(91)90289-5
  14. Koebbel A., Leslie A., Dudzik E., Mitchell C. E. J. X-ray standing wave study of wet-etch sulphur-treated InP 100 surfaces. Applied Surface Science, 2000, v. 166(1–4), pp. 196–200. https://doi.org/10.1016/S0169-4332(00)00413-X
  15. Nelson A. J., Frigo S. P., Rosenberg R. Soft x-ray photoemission characterization of the H2S exposed surface of p-InP. Journal of Applied Physics, 1992, v. 71(12), pp. 6086–6089. https://doi.org/10.1063/1.350415
  16. Nelson A. J., Frigo S. P., Rosenberg R. Surface type conversion of InP by H2S plasma exposure: A photoemission investigation. Journal of Vacuum Science & Technology A, 1993, v. 11(4), pp. 1022–1027. https://doi.org/10.1116/1.578807
  17. Kwok R. W. M., Lau W. M. X-ray photoelectron spectroscopy study on InP treated by sulfur containing compounds. Journal of Vacuum Science & Technology A, 1992, v. 10(4), pp. 2515–2520. https://doi.org/10.1116/1.578091
  18. Wang X., Weinberg W. H. Structural model of sulfur on GaAs(100). Journal of Applied Physics, 1994, v. 75(5), pp. 2715–2717. https://doi.org/10.1063/1.356203
  19. Berkovits V. L., Paget D. Optical study of surface dimers on sulfur-passivated (001)GaAs. Applied Physics Letters, 1992, v. 61(15), pp. 1835–1837. https://doi.org/10.1063/1.108390
  20. Bessolov V. N., Konenkova E. V., Lebedev M. V. Sulfi dization of GaAs in alcoholic solutions: a method having an impact on effi ciency and stability of passivation. Materials Science and Engineering: B, 1997, v. 44(1–3), pp. 376–379. https://doi.org/10.1016/S0921-5107(96)01816-8
  21. Sladkopevtsev B. V., Mittova I. Ya., Tomina E. V., Burtseva N. A. Growth of vanadium oxide fi lms on InP under mild conditions and thermal oxidation of the resultant structures. Inorganic Materials, 2012, v. 48(2), pp. 161–168. https://doi.org/10.1134/S0020168512020173
  22. Tretyakov N. N., Mittova I. Ya., Sladkopevtcev B. V., Samsonov A. A. Vlijanie magnetronno napylennogo sloja MnO2 na kinetiku termooksidirovanija InP, sostav i morfologiju sintezirovannyh plenok [The effect of the magnetron-deposited MnO2 layer on the InP thermal oxidation kinetics, composition and morphology of the synthesized fi lms]. Inorganic Materials, 2017, v. 53(1), pp. 41–48. https://doi.org/10.7868/S0002337X17010171  (in Russ.)

Downloads

Download data is not yet available.

Author Biographies

Olga S. Tarasova, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Tarasova Olga S. – master’s student of the Department of Materials Science and Industry of Nanosystems,
Voronezh State University, Voronezh, Russian Federation; e-mail: tarasova_os96@mail.ru. ORCID
iD 0000-0003-1619-8755.

Aleksey I. Dontsov, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dontsov Aleksey I. – Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Materials
Science and Industry of Nanosystems, Voronezh State University, Associate Professor of the Department
of Physics, Voronezh State Technical University, Voronezh, Russian Federation; e-mail: dontalex@mail.ru.     ORCID iD 0000-0002-3645-1626.

Boris V. Sladkopevtsev, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Sladkopevtsev Boris V. – Cand. Sci. (Chem.), Associate Professor of the Department of Materials
Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation;
e-mail: dp-kmins@ yandex.ru. ORCID iD 0000-0002-0372-1941.

Irina Y. Mittova, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Mittova Irina Y. – Dr. Sci. (Chem.), Full Professor, Professor of the Department of Materials Science
and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: imittova@mail.ru. ORCID iD 0000-0001-6919-1683

Published
2019-06-15
How to Cite
Tarasova, O. S., Dontsov, A. I., Sladkopevtsev, B. V., & Mittova, I. Y. (2019). The effect of sulphur vapour treatment on the speed of InP thermal oxidation, composition, surface morphology, and properties of films. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(2), 296-305. https://doi.org/10.17308/kcmf.2019.21/767
Section
Статьи

Most read articles by the same author(s)