Keywords: silicon,, porous silicon,, composite structures,, functionalization,, electro-thermal diffusion,, wetting angle


Purpose. In this work, we investigated the possibility of modifying porous silicon with silver particles.
Methods and methodology. For the synthesis of substrates was used the method of electrochemical
etching in hydrofl uoric acid solutions. Аt given technological parameters was formed a porous matrix. The resulting samples were subjected to further functionalization. For the synthesis of silver ink AgNO3 was used the method of colloidal quantum dots and then by the method of electro-thermal diffusion, these particles were deposited in a porous matrix to forming a composite structure. To study the samples was used by scanning electron microscopy. 
Morphology and diffusion processes were studied using SEM data. To control the functionalization
process was used the method of determining the wetting angle.
Results. Using the method of centrifugation, a silver layer was deposited on a porous silicon matrix. According to SEM data, it was established that the pore size is d = 50-100 nm, the layer thickness is 25 μm. Base on wetting angle data was concluded that the porous silicon matrix is initially hydrophobic (q ≈ 59°). After the deposition of silver particles, the hydrophobicity changes to hydrophilicity (q ≈ 31°) and further electrothermal effects have little effect on the wetting angle and the nature of hydrophilicity (q ≈ 42°).
Conclusion. As a result of research work demonstrated the effectiveness of the electro-thermal
methods for introducing silver into the porous silica matrix. It shows that the deposition of silver leads to a decrease in the hydrophobicity of the surface.


The study was carried out with the support of the Russian Foundation for Basic Research in the framework of the scientifi c project 19-32-50038 mol_nr “Study of the morphological, physicochemical and optical properties of por-Si depending on the methods of their formation and functionalization”.





  1. Raúl J. Martín-palma, Patrick D. McAtee, Rehab Ramadan, Akhlesh Lakhtakia. Hybrid nanostructured porous silicon-silver layers for wideband optical absorption. Scientifi c Reports, 2019, v. 9(1), p. 7291. https://doi.org/10.1038/s41598-019-43712-7
  2. Kleps I., Miu M., Danila M., Simion M., Ignat T., Bragaru A., Dumitru L., Teodosiu G. Silver/porous silicon (PS) nanocomposite layers for biomedical applications. Proc. of 2006 International Semiconductor Conference”, 27-29 Sep., 2006, no. 9211112. https://doi.org/10.1109/SMICND.2006.283935
  3. Ensafi A. A., Rezaloo F., Rezaei B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sensors and Actuators B, 2016, v. 231, pp. 239–244. https://doi.org/10.1016/j.snb.2016.03.018
  4. Jinjie Yin, Xiang Qi, Liwen Yang, Guolin Hao, Jun Li, Jianxin Zhong A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochimica Acta, 2011, v. 56(11), pp. 3884–3889. https://doi.org/10.1016/j.electacta. 2011.02.033
  5. Spivak Yu. M., Bespalova K. A., Belorus A. O., Panevin A. A., Somov P. A., Grigor’eva N. Yu., Chistyakova L. V., Zhuravskiy S. G., Moshnikov V. A. Sposob polucheniya i primer lekarstvennoy funktsionalizatsii poverkhnosti nanochastits poristogo kremniya [A method of obtaining and an example of drug functionalization of the surface of porous silicon nanoparticles]. Biotekhnosfera [Biotechnosphere], 2017 (3), pp. 69–75. (in Russ.)
  6. Pastukhov A. I., Belorus A. O., Bukina Ya. V., Spivak Yu. M., Moshnikov V. A. Infl uence of technology conditions on the surface energy of porous silicon using the method of contact angle. Proc. of “2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)”, 1–3 Feb., 2017, pp. 1183-1185. https://doi.org/10.1109/eiconrus.2017.7910770
  7. Matyushkin L. B. Tekhnologiya i oborudovanie dlya polucheniya kolloidnykh kvantovykh tochek CsPbX3 (X = Cl, Br, I), CdSe/ZnS, plazmonnykh nanochastits Ag/SiO2 i gibridnykh struktur na ikh osnove [Technology and equipment for obtaining CsPbX3 colloidal quantum dots (X = Cl, Br, I), CdSe/ZnS, Ag/SiO2 plasmonic nanoparticles and hybrid structures based on them. Cand. Sci. (Eng.) diss. St. Petersburg, 2018, 138 p. URL: https://elibrary.ru/item.asp?id=35115356 (in Russ.)
  8. Permiakov N. V., Matyushkin L. B., Belorus A. O., Koshevoi V. L. Investigation of a program-controlled process of impregnation of porous semiconductors with silver nanoparticles to create an electrical contact. Proc. of “IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)”, 2018, pp. 539–543. https://doi.org/10.1109/EICon- Rus.2018.8317154
  9. Travkin P. G., Vorontsova N. V., Vysotsky S. A., Lenshin A. S., Spivak Yu. M., Moshnikov V. A. Issledovanie zakonomernostey formirovaniya struktury poristogo kremniya pri mnogostadiynykh rezhimakh elektrokhimicheskogo travleniya [Study of regularities of porous silicon structure formation with multistage modes of electrochemical etching]. Izvestiya SPBGETU LETI, 2011(4). pp. 3–9. (in Russ.)
  10. Belorus A. O., Komlev A. A. Certifi cate of state registration of computer programs No. 2014613394. Measurement of contact angle (MofCA) 26 March 2014. (in Russ.)
  11. Van Hoonacker A., Englebienne P. Revisiting silver nanoparticle chemical synthesis and stability by optical spectroscopy. Current Nanoscience, 2006, v. 2(4), pp. 359–371. https://doi.org/10.2174/157341306778699310
  12. Girel K. V., Bondarenko A. V. Formirovanie nanostruktur serebra metodom immersionnogo osazhdeniya [Formation of silver nanostructures by immersion deposition method onto porous silicon and study of their optical properties]. Doklady BGUIR, 2014, v. 86(8), pp. 5–10. (in Russ.)


Download data is not yet available.

Author Biographies

Veniamin L. Koshevoi, Saint-Petersburg Mining University 2, 21st Line, 199106 St. Petersburg, Russian Federation

postgraduate, Saint Petersburg Mining University, St. Petersburg, Russian Federation;e-mail: venia.koshevoi.eltech@gmail.com. ORCID iD 0000-0001-5958-0319.

Anton O. Belorus, Saint Petersburg Electrotechnical University “LETI” 5, Professora Popova str., 197376 St. Petersburg, Russian Federation

postgraduate, Saint Petersburg Electrotechnical University “LETI”, St. Petersburg, Russian Federation; e-mail: mop_92@mail.ru. ORCIDiD 0000-0002-6752-8796.

Matyushkin В. Matyushkin, Saint Petersburg Electrotechnical University “LETI” 5, Professora Popova str., 197376 St. Petersburg, Russian Federation

Cand. Sc. (Eng.), Senior Researcher, Saint Petersburg Electrotechnical University “LETI”, St. Petersburg, Russian Federation; e-mail: leva.matyushkin@gmail.com. ORCIDiD 0000-0003-1232-5358.

Ilya M. Pleshanov, Saint Petersburg National Research University of Information Technologies, Mechanics and Opticsc (ITMO) 49, Kronverksky pr., 197101 St. Petersburg, Russian Federation

postgraduate, Saint Petersburg National Research University of Information Technologies, Mechanics and Opticsc (ITMO), St. Petersburg, Russian Federation; e-mail: pim93@

Pavel V. Seredin, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Phys.-Math.), Associate Professor, Department of Solid State Physic and Nanostructures, Voronezh State University, Voronezh, Russian Federation; e-mail: paul@phys.vsu.ru. ORCIDiD 0000-0002-6724-0063.

Sergey A. Ivkov, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

postgraduate, Leading Engineer, Voronezh State University, Voronezh, Russian Federation; e-mail: ivkov@phys.vsu.ru.ORCID iD 0000-0003-1658-5579.

Alexander S. Lenshin, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Voronezh State University, Voronezh, Russian Federation; e-mail: lenshinas@mail.ru. ORCIDiD 0000-0002-1939-253X.

How to Cite
Koshevoi, V. L., Belorus, A. O., MatyushkinM. В., Pleshanov, I. M., Seredin, P. V., Ivkov, S. A., & Lenshin, A. S. (2019). FEATURES OF SILVER DEPOSITION IN POROUS SILICON BY ELECTRO-THERMAL DIFFUSION METHOD. Condensed Matter and Interphases, 21(3), 390-398. https://doi.org/10.17308/kcmf.2019.21/1158

Most read articles by the same author(s)