Simple synthesis of floating Fe2O3/Luffa catalysts for the photo-Fenton degradation of methyl orange at near neutral pH
Abstract
Although widely used in the textile industry, methyl orange is considered one of the most toxic dyes, which have negative impacts on the aquatic environment and needs to be removed from water bodies. Hence, the present paper reports the synthesis of new floating photo-Fenton catalysts based on the immobilization of Fe2O3 nanoparticles on the surface of Luffa sponges for the oxalate-induced-degradation of methyl orange. The floating catalytic sponges were prepared through a simple precipitation method followed by a reflux heating process and then characterized by field emission scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry, and nitrogen adsorption-desorption experiments. According to the experimental results, methyl orange was effectively degraded over our floating catalytic sponges under
light illumination at near neutral pH. The catalytic activity was also found to be enhanced with the increase in crystallinity of Fe2O3 nanoparticles, which can be achieved by the reflux heating. Besides, owing to the floating feature, these sponges are easily separated from the solution, thereby not forming a secondary source of pollution for water
Downloads
References
Shah M. Effective treatment systems for azo dye degradation: a joint venture between physicochemical & microbiological process. Journal of Environmental Bioremediation & Biodegradation. 2014;2: 231–242. https://doi.org/10.12691/ijebb-2-5-4
Fan J., Guo Y., Wang J., Fan M. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials. 2009;166: 904–910. https://doi.org/10.1016/j.jhazmat.2008.11.091
Haque M. M., Haque M. A., Mosharaf M. K., Marcus P. K. Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi Journal of Biological ciences. 2021;28: 793–804. http://doi.org/10.1016/j.sjbs.2020.11.012
Kant R. Textile dyeing industry an environmental hazard. Natural Sciences. 2012;4: 22–26. http://doi.org/10.4236/ns.2012.41004
Akansha K., Chakraborty D., Sachan S. G. Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatalysis and Agricultural Biotechnology. 2019;18: 101044. https://doi.org/10.1016/j.bcab.2019.101044
Stepanova K. V., Yakovleva N. M., Kokatev A. N., Pettersson, H. The structure and properties of nanoporous anodic oxide films on titanium aluminide. Condensed Matter and Interphases. 2019;21(1): 135–145. https://doi.org/10.17308/kcmf.2019.21/724
Xu Z. Zhang M., Wu J., Liang J., Zhou L., Lǚ B. Visible light-degradation of azo dye methyl orange using TiO2/b-FeOOH as a heterogeneous photo-Fenton-like catalyst. Water Science & Technology. 2013;68(10): 2178–2185. https://doi.org/10.2166/wst.2013.475
Hassan M. E., Chen Y., Liu G., Zhu D., Cai J. Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light. Journal of Water Process Engineering. 2016;12: 52–57. https://doi.org/10.1016/j.jwpe.2016.05.014
Domacena A. M. G., Aquino C. L. E., Balela M. D. L. Photo-Fenton degradation of methyl orange using hematite (a-Fe2O3) of various morphologies. Materials Today: Proceedings. 2020;22: 248–254. https://doi.org/10.1016/j.matpr.2019.08.095
Shaabani A., Nosrati H., Seyyedhamzeh M. Cellulose@Fe2O3 nanoparticle composites: magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo[1,2-a]pyridines. Research on Chemical Intermediates. 2013;41: 3719–3727. https://doi.org/10.1007/s11164-013-1484-6
Mikenin P., Zazhigalov S., Elyshev A., Lopatin S., Larina T., Cherepanova S., Pisarev D., Baranov D., Zagoruiko A. Iron oxide catalyst at the modified glass fiber support for selective oxidation of H2S. Catalysis Communications. 2016;87: 36–40. https://doi.org/10.1016/j.catcom.2016.08.038
Bian L., Liu Y., Zhu G., Yan C., Zhang J., Yuan A. Ag@CoFe2O4/Fe2O3 nanorod arrays on carbon fiber cloth as SERS substrate and photo-Fenton catalyst for detection and degradation of R6G. Ceramics International. 2018;44(7): 7580–7587. https://doi.org/10.1016/j.ceramint.2018.01.172
Mohamad E. R., Haidar Z., Lakiss L., Toufaily J., Frederic T. S. Immobilization of TiO2 nanoparticles on natural Luffa cylindrica fibers for photocatalytic applications. RSC Advances. 2013;3: 3438–3445. https://doi.org/10.1039/C2RA22438K
Feng L., Zhang P., Li J., Han X., Tang S. Facile preparation, characterization, and formaldehyde elimination performance of MnOx/natural loofah composites. Environmental Progress and Sustainable Energy. 2020;39(6): e13437. https://doi.org/10.1002/ep.13437
Annunciado T. R., Sydenstricker T. H. D., Amico S. C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin. 2005;50: 1340–1346. https://doi.org/10.1016/j.marpolbul.2005.04.043
Wu M. C., Lin M. P., Chen S. W., Lee P. H., Lic J. H., Su W. F. Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Advances. 2014;4: 10043. https://doi.org/ 10.1039/c3ra45255g
Mittova I. Y., Sladkopevtsev B. V., Mittova V. O., Nguyen A. T., Kopeychenko E. I., Khoroshikh N. V., Varnachkina I. A. Formation of nanoscale films of the (Y2O3–Fe2O3) on the monocrystal InP. Condensed Matter and Interphases. 2019;21(3): 406–418. https://doi.org/10.17308/kcmf.2019.21/1156
Huang Y. H., Huang Y. J., Tsai H. C., Chen H. T. Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. Journal of the Taiwan Institute of Chemical Engineers. 2010;41: 699–704. https://doi.org/10.1016/j.jtice.2010.01.012
Duesterberg C. K., Cooper W. J., Waite T. D. Fenton-mediated oxidation in the presence and absence of oxygen. Environmental Science & Technology. 2005;39: 5052–5058. https://doi.org/10.1021/es048378a
Mulazzani Q. G., D’Angelantonio M., Venturi M., Hoffman M. Z., Rodgers M. A. J. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. Journal of Physical Chemistry. 1986;90: 5347–5352. https://doi.org/10.1021/j100412a090
Walling C. Fenton’s reagent revisited. Accounts of Chemical Research. 1975;8: 125–131. https://doi.org/10.1021/ar50088a003
Sedlak D. L., Hoigné J. The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmospheric Environment. 1993;27: 2173–2185. https://doi.org/10.1016/0960-1686(93)90047-3
Wang X., Zhang L. Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system. RSC Advances. 2018;8: 40632. https://doi.org/10.1039/C8RA08511K
Biswas A., Saha S., Jana N. R. ZnSnO3 nanoparticle-based piezocatalysts for ultrasoundassisted degradation of organic pollutants. ACS Applied Nano Materials. 2019;2: 1120–1128. https://doi.org/10.1021/acsanm.9b00107
Kormann C., Bahnemann D. W., Hoffmann M. R. Environmental photochemisty: Is iron oxide (hematite) an active photocatalyst? A comparative study: a-Fe2O3, ZnO, TiO2. Journal of Photochemistry and photobioCondensed logy A: Chemistry. 1989;48: 161–169. https://doi.org/10.1016/1010-6030(89)87099-6
Mishra M., Chun D. M. a-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General. 2015;498: 126–141. https://doi.org/10.1016/j.apcata.2015.03.023
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.