Electrophysical properties of PIN photodiodes of the 2.2-2.6 μm range based on InGa(Al)As/InP heterostructures with a metamorphic buffer layer

Keywords: Molecular beam epitaxy, Metamorphic buffer layers, Near IR photodetectors, Current-voltage characteristic, Capacitance–voltage characteristic, Dark currents

Abstract

Due to a large number of applications in the near and short-wave IR spectrum and a relatively high detectivity, PIN photodiodes based on epitaxial InGa(Al)As/InP heterostructures are of a great scientific interest. The operational spectral range of such photodetectors is up to 2.6 μm. However, to reach such wavelengths it is necessary to synthesize heterostructures with metamorphic buffer layers. In our study, we investigated the current-voltage and capacitance–voltage characteristics of PIN photodiodes based on InGa(Al)As/InP heterostructures with an original metamorphic buffer layer and an In0.83Ga0.17As
absorbing layer grown by means of molecular beam epitaxy.

The photodiode chips were formed using standard post-growth processing techniques. The diameter of the photosensitive area of the obtained diodes was 140 μm. The dark currents and the shunt resistance were ~ 300 nA and ~ 25 kΩ at the voltage of -10 mV respectively.

Therefore, the suggested metamorphic buffer layer effectively eliminates threading dislocations in the active area of the heterostructure. The obtained heterostructures with metamorphic buffer layers can be used to produce IR photodetectors for the spectral range of 2.2-2.6 μm 

Downloads

Download data is not yet available.

Author Biographies

Elena I. Vasilkova, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation

postgraduate student, Engineer,
Alferov University (Saint Petersburg, Russian
Federation)

Evgeny V. Pirogov, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation

Researcher, Alferov University
(Saint Petersburg, Russian Federation)

Kseniya Yu. Shubina, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher, Alferov University (Saint Petersburg,
Russian Federation)

Kirill O. Voropaev, JSC “OKB-Planeta”, 13a, room 1n Bolshaya Moskovskaya st., Velikiy Novgorod 173004, Russian Federation

Head of the group, JSC “OKBPlaneta”
(Velikiy Novgorod, Russian Federation)

Аndrey А. Vasil’ev, JSC “OKB-Planeta”, 13a, room 1n Bolshaya Moskovskaya st., Velikiy Novgorod 173004, Russian Federation

Engineer-technologist, JSC
“OKB-Planeta” (Velikiy Novgorod, Russian Federation)

Leonid Ya. Karachinsky, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation; ITMO University 49, bldg. A Kronverksky pr., Saint Petersburg 197101, Russian Federation

Dr. Sci. (Tech.), Сhief
Researcher, Alferov University; Leading Researcher,
ITMO University (Saint Petersburg, Russian
Federation)

Innokenty I. Novikov, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation; ITMO University 49, bldg. A Kronverksky pr., Saint Petersburg 197101, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher, Alferov University; Senior
Researcher, ITMO University (Saint Petersburg,
Russian Federation)

Oleg V. Barantsev, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation

student, Laboratory Assistant, ,
Alferov University (Saint Petersburg, Russian
Federation)

Maxim S. Sobolev, Alferov University, 8/3 Khlopina st., Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Head
of the Laboratory, Alferov University (Saint Petersburg,
Russian Federation)

References

Burlakov I. D., Grinchenko L.Y., Dirochka A.I., Zaletaev N. B. Short wavelength infrared InGaAs detectors. Advances of Applied Physics. 2014;2(2). (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=21505376

Chen X. Y., Gu Y., Zhang Y. G., … Zhu Y. In0.83Ga0.17As photodetectors with different doping concentrations in the absorption layers. Infrared Physics & Technology. 2018;89: 381–386. https://doi.org/10.1016/j.infrared.2018.01.029

Ji X., Liu B., Tang H., … Yan F. 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Advances. 2014;4(8): 087135. https://doi.org/10.1063/1.4894142

Rogalski A. Infrared detectors: status and trends. Progress in Quantum Electronics. 2003;27(2-3): 59–210. https://doi.org/10.1016/S0079-6727(02)00024-1

Gendry M., Drouot V., Santinelli C., Hollinger G. Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Applied Physics Letters. 1992;60(18): 2249–2251. https://doi.org/10.1063/1.107045

Beam E. A., Temkin H., Mahajan S. Influence of dislocation density on IV characteristics of InP photodiodes. Semiconductor Science and Technology. 1992;7(1A): A229. https://doi.org/10.1088/0268-1242/7/1A/044

Tersoff J. Dislocations and strain relief in compositionally graded layers. Applied Physics Letters. 1993;62(7): 693–5. https://doi.org/10.1063/1.108842

Karachinsky L. Y., Kettler T., Novikov I. I., … Vasil’Ev A. P. Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate. Semiconductor Science and Technology. 2006; 21(5): 691. https://doi.org/10.1088/0268-1242/21/5/022

Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Berezovskaya T. N., Nevedomskiy V. N. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures. Semiconductors. 2015;49(10): 1388–1392. https://doi.org/10.1134/S1063782615100073

Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Nevedomskiy V. N., Bugrov V. E. Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, emitting light in the 1250–1400-nm spectral range. Semiconductors. 2016;50(5): 612–615. https://doi.org/10.1134/S1063782616050079

Vasilkova Е. I., Pirogov Е. V., Sobolev M. S., Ubiyvovk E. V. Mizerov A.M., Seredin P. V. Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the rangeof 2.2–2.6 um. Condensed Matter and Interphases. 2023;25(1): 20–26. https://doi.org/10.17308/kcmf.2023.25/10972

Liu Y., Ma Y., Li X., … Fang J. Surface leakage behaviors of 2.6 um In0.83Ga0.17As photodetectors as a function of mesa etching depth. IEEE Journal of Quantum Electronics. 2020;56(2): 1–6. https://doi.org/10.1109/JQE.2020.2970745

Sze S. M., Li Y., Ng K. K. Physics of semiconductor devices. John wiley & Sons; 2021. 994 p.

Published
2024-07-12
How to Cite
Vasilkova, E. I., Pirogov, E. V., Shubina, K. Y., Voropaev, K. O., Vasil’evА. А., Karachinsky, L. Y., Novikov, I. I., Barantsev, O. V., & Sobolev, M. S. (2024). Electrophysical properties of PIN photodiodes of the 2.2-2.6 μm range based on InGa(Al)As/InP heterostructures with a metamorphic buffer layer. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 417-423. https://doi.org/10.17308/kcmf.2024.26/12216
Section
Original articles