Electrophysical properties of PIN photodiodes of the 2.2-2.6 μm range based on InGa(Al)As/InP heterostructures with a metamorphic buffer layer
Abstract
Due to a large number of applications in the near and short-wave IR spectrum and a relatively high detectivity, PIN photodiodes based on epitaxial InGa(Al)As/InP heterostructures are of a great scientific interest. The operational spectral range of such photodetectors is up to 2.6 μm. However, to reach such wavelengths it is necessary to synthesize heterostructures with metamorphic buffer layers. In our study, we investigated the current-voltage and capacitance–voltage characteristics of PIN photodiodes based on InGa(Al)As/InP heterostructures with an original metamorphic buffer layer and an In0.83Ga0.17As
absorbing layer grown by means of molecular beam epitaxy.
The photodiode chips were formed using standard post-growth processing techniques. The diameter of the photosensitive area of the obtained diodes was 140 μm. The dark currents and the shunt resistance were ~ 300 nA and ~ 25 kΩ at the voltage of -10 mV respectively.
Therefore, the suggested metamorphic buffer layer effectively eliminates threading dislocations in the active area of the heterostructure. The obtained heterostructures with metamorphic buffer layers can be used to produce IR photodetectors for the spectral range of 2.2-2.6 μm
Downloads
References
Burlakov I. D., Grinchenko L.Y., Dirochka A.I., Zaletaev N. B. Short wavelength infrared InGaAs detectors. Advances of Applied Physics. 2014;2(2). (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=21505376
Chen X. Y., Gu Y., Zhang Y. G., … Zhu Y. In0.83Ga0.17As photodetectors with different doping concentrations in the absorption layers. Infrared Physics & Technology. 2018;89: 381–386. https://doi.org/10.1016/j.infrared.2018.01.029
Ji X., Liu B., Tang H., … Yan F. 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Advances. 2014;4(8): 087135. https://doi.org/10.1063/1.4894142
Rogalski A. Infrared detectors: status and trends. Progress in Quantum Electronics. 2003;27(2-3): 59–210. https://doi.org/10.1016/S0079-6727(02)00024-1
Gendry M., Drouot V., Santinelli C., Hollinger G. Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Applied Physics Letters. 1992;60(18): 2249–2251. https://doi.org/10.1063/1.107045
Beam E. A., Temkin H., Mahajan S. Influence of dislocation density on IV characteristics of InP photodiodes. Semiconductor Science and Technology. 1992;7(1A): A229. https://doi.org/10.1088/0268-1242/7/1A/044
Tersoff J. Dislocations and strain relief in compositionally graded layers. Applied Physics Letters. 1993;62(7): 693–5. https://doi.org/10.1063/1.108842
Karachinsky L. Y., Kettler T., Novikov I. I., … Vasil’Ev A. P. Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate. Semiconductor Science and Technology. 2006; 21(5): 691. https://doi.org/10.1088/0268-1242/21/5/022
Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Berezovskaya T. N., Nevedomskiy V. N. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures. Semiconductors. 2015;49(10): 1388–1392. https://doi.org/10.1134/S1063782615100073
Egorov A. Yu., Karachinsky L. Ya., Novikov I. I., Babichev A. V., Nevedomskiy V. N., Bugrov V. E. Optical properties of metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, emitting light in the 1250–1400-nm spectral range. Semiconductors. 2016;50(5): 612–615. https://doi.org/10.1134/S1063782616050079
Vasilkova Е. I., Pirogov Е. V., Sobolev M. S., Ubiyvovk E. V. Mizerov A.M., Seredin P. V. Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the rangeof 2.2–2.6 um. Condensed Matter and Interphases. 2023;25(1): 20–26. https://doi.org/10.17308/kcmf.2023.25/10972
Liu Y., Ma Y., Li X., … Fang J. Surface leakage behaviors of 2.6 um In0.83Ga0.17As photodetectors as a function of mesa etching depth. IEEE Journal of Quantum Electronics. 2020;56(2): 1–6. https://doi.org/10.1109/JQE.2020.2970745
Sze S. M., Li Y., Ng K. K. Physics of semiconductor devices. John wiley & Sons; 2021. 994 p.
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.