Influence of the nature of the organic acid salt on the currentvoltage characteristics and electrochemical impedance spectra of anion-exchange membranes
Abstract
To improve the processes of obtaining and isolating organic acids from solutions, it is necessary to understand the processes occurring on heterogeneous and homogeneous anion-exchange membranes in contact with solutions of salts of organic acids when electric current flows through the membrane system.
The purpose of this paper was to study the effect of sodium salts of acetic, malonic, and citric acids on the current-voltage characteristics (CVC) and electrochemical impedance (ECI) spectra of heterogeneous and homogeneous anion-exchangemembranes.
Heterogeneous Ralex AMH (Mega, Czech Republic) and homogeneous Lancytom® AHT (LANRAN, China) membranes in contact with 0.1 mol-eq/L solutions of neutral and acidic sodium salts of acetic, malonic and citric acids were studied. In solutions of neutral salts, the current-voltage characteristics of both membranes have a traditional form typical for mineral salt solutions, with the exception of the homogeneous Lancytom® AHT membrane in a sodium malonate solution. In thelatter case and in solutions of acidic salts of these acids CVC of both membranes are nonlinear at currents less than the limiting. This is caused by proton transfer reactions between water molecules and carboxyl groups of acid anions or acid molecules and, as a result, the rate constant of dissociation of water molecules in solutions of organic acidic salts increased by many orders of magnitude. By the appearance of additional semicircles in the spectra, ECI frequency spectra allow
identifying the occurrence of new processes in the membrane system when an electric current flows through it.
In most cases, the results of impedance measurements of the studied systems are consistent with the results of voltammetry, although the protonation-deprotonation processes in solution with the participation of organic acid anions are not reflected in the frequency spectra of a heterogeneous membrane. This feature may have been caused by a greater intensity of electroconvection near the surface of heterogeneous anion-exchange membranes as compared to homogeneous anionexchange membranes
Downloads
References
Kemperman A. J. B. Handbook bipolar membrane technology. Enschede: Twente University Press (TUP). 2000. 275 p. Available at: https://research.utwente.nl/en/publications/handbook-bipolar-membranetechnology
Hoek E. M. V., Tarabara V. V. (eds). Encyclopedia of membrane science and technology. Vol. 3. Hoboken, NJ: Wiley; 2013. 2328p . https://doi.org/10.1002/9781118522318
Tanaka Y. Ion exchange membranes. Fundamentals and applications, 2nd Edition. Amsterdam: Elsevier Science; 2015. 522 p. https://doi.org/10.1016/b978-0-444-63319-4.00002-x
Jiang C., Wang Y., Xu T. Membranes for the recovery of organic acids from fermentation broths. Membrane Technologies for Biorefining. 2016: 135-161. https://doi.org/10.1016/B978-0-08-100451-7.00006-2
Ran J., Wu L., He Y., … Xu T. Ion exchange membranes: New developments and applications. Journal of Membrane Science. 2017;522: 267-291. https://doi.org/10.1016/j.memsci.2016.09.033
Karaffa L., Ch. P. Kubicek Ch. P. Production of organic acids by fungi. In: Encyclopedia of Mycology. Óscar Zaragoza, Arturo Casadevall (eds.). Elsevier; 2021. pp. 406–419. https://doi.org/10.1016/B978-0-12-809633-8.21066-2
Szczygiełda M., Prochaska K. Effective separation of bio-based alpha-ketoglutaric acid from postfermentation broth using bipolar membrane electrodialysis (EDBM) and fouling analysis. Biochemical Engineering Journal. 2021;166: 107883. https://doi.org/10.1016/j.bej.2020.107883
Melnikov S. S., Nosova E. N., Melnikova E. D., Zabolotsky V. I. Reactive separation of inorganic and organic ions in electrodialysis with bilayer membranes. Separation and Purification Technology. 2021;268: 118561. https://doi.org/10.1016/j.seppur.2021.118561
Mandal P., Mondal R., Goel P., Bhuvanesh E., Chatterjee U., Chattopadhyay S. Selective recovery of carboxylic acid through PVDF blended anion exchange membranes using electrodialysis. Separation and Purification Technology. 2022;292: 121069. https://doi.org/10.1016/j.seppur.2022.121069
Karpenko T. V., Kovalev N. V., Kirillova K. R., … Zabolotsky V. I. Competing transport of malonic and acetic acids across commercial and modified RALEX AMH anion-exchange membranes. Membranes and Membrane Technologies. 2022;4: 118–126. https://doi.org/10.1134/S2517751622020056
Kotov V. V., Isaev N. I., Shaposhnik V. A. Transfer of weak electrolytes through ion-exchange membranes*. Russian Journal of Physical Chemistry A. 1972;46: 539–540. (In Russ.) Available at: https://elibrary.ru/item.asp?id=28901705
Reshetnikova A. K. Rozhkova M. V., Kotov V. V., Akimenko I. B. Transfer of dicarboxylic acids across ion-exchange membranes. Electrochemistry. 1996;32(2): 180–183. Available at: https://elibrary.ru/item.asp?id=13247836
Vasil’eva V. I., Reshetnikova A. K. Diffusion boundary layers in transport of aliphatic acids in electromembrane systems. Russian Journal of Electrochemistry. 2002;38: 965–971. https://doi.org/10.1023/A:1020284826862
Vasil’eva V. I., Grigorchuk O. V., Shaposhnik V. A. Limiting current density in electromembrane systems with weak electrolytes. Desalination. 2006;192(1–3): 401–407. https://doi.org/10.1016/j.desal.2005.07.044
Kozaderova O. A. Sorption, diffusion characteristics and electrical conductivity of anionexchange membranes in solutions of lactic acid and sodium chloride. Sorbtsionnye i Khromatograficheskie Protsessy. 2023;23(4): 539–546. (In Russ., abstract in Eng.). https://doi.org/10.17308/sorpchrom.2023.23/11563
Chandra A., Tadimeti J. G. D., Bhuvanesh E., Pathiwada D., Chattopadhyay S. Switching selectivity of carboxylic acids and associated physico-chemical changes with pH during electrodialysis of ternary mixtures. Separation and Purification Technology. 2018;193: 327–344. https://doi.org/10.1016/j.seppur.2017.10.048
Martí-Calatayud M. C., Evdochenko E., Bär J., García-Gabaldón M., Wessling M., Pérez-Herranz V. Tracking homogeneous reactions during electrodialysis of organic acids via EIS. Journal of Membrane Science. 2020;595: 117592. https://doi.org/10.1016/j.memsci.2019.117592
Pismenskaya N. D., Rybalkina O. A., Kozmai A. E., Tsygurina K. A., Melnikova E. D., Nikonenko V. V. Generation of H+ and OH− ions in anion-exchange membrane/ampholyte-containing solution systems: A study using electrochemical impedance spectroscopy. Journal of Membrane Science. 2020;601: 117920. https://doi.org/10.1016/j.memsci.2020.117920
Rybalkina O. A., Sharafan M. V., Nikonenko V. V., Pismenskaya N. D. Two mechanisms of H+/OH– ion generation in anion-exchange membrane systems with polybasic acid salt solutions. Journal of Membrane Science. 2022;651: 120449. https://doi.org/10.1016/j.memsci.2022.120449
Chandra A., Bhuvanesh E., Chattopadhyay S. A critical analysis on ion transport of organic acid mixture through an anion-exchange membrane during electrodialysis. Chemical Engineering Research and Design. 2022;178: 13–24. https://doi.org/10.1016/j.cherd.2021.11.035
Gorobchenko A. D., Mareev S. A., Rybalkina O. A., Tsygurina K. A., Nikonenko V. V., Pismenskaya N. D. How do proton-transfer reactions affect currentvoltage characteristics of anion-exchange membranes in salt solutions of a polybasic acid? Modeling and experiment. Journal of Membrane Science. 2023;683: 121786. https://doi.org/10.1016/j.memsci.2023.121786
MEGA Group; RALEX® electro separation membranes. Available at: https://www.mega.cz/ membranes 23. Acid/Alkali resistance Anion IEM-LANCYTOM®IEM-Bipolar-ED-RED-LiOH-LANRAN. Available at: http://lanran.com.cn/?list_8/102.html
Zabolotskii V. I., Shel’deshov N. V., Sharafan M. V. Electric mass transfer of sodium chloride through cation-exchange membrane MK-40: A rotating membrane disk study. Electrochemistry. 2006; 42(12): 1345–1351. https://doi.org/10.1134/s1023193506120123
Simons R. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes. Electrochimica Acta. 1984;29: 151–158. https://doi.org/10.1016/0013-4686(84)87040-1
Lurie Yu. Yu. Handbook of analytical chemistry*. Moscow: Khimiya Publ.; 1989. 448 p. (In Russ.)
Eigen M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angewandte Chemie International Edition in English. 1964;3(1): 1–19. https://doi.org/10.1002/anie.196400011
Fersht A. Enzyme structure and mechanism. San Francisco: W.H. Freeman; 1977. 371 p.
Nikonenko V. V., Vasil’eva V. I., Akberova E. M., … Pourcelly G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Advances in Colloid and Interface Science. 2016;235: 233–246. https://doi.org/10.1016/j.cis.2016.06.014
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.