Physicochemical study of the processes of b-cyclodextrin hydrates dehydration
Abstract
The research involved synthesizing b-cyclodextrin hydrates of the b-CD·nH2O (n = 11.9–0.9) composition.
The obtained compounds were studied by powder X-ray diffraction (XRD), which revealed the transition from a monoclinic unit cell to an orthorhombic one with a decrease in the water content in the samples. The pressure of saturated vapor of the water in the b-CD·nH2O (n = 10.6–7.0) hydrates was measured by static tensimetry with membrane null-manometer over a wide temperature range (293–384 K) under conditions of a quasi-constant hydrate composition. The measured vapor pressure increases in proportion to the increase in the water content of the hydrate samples.
The experimental data reduced to a single composition of b-CD·1H2O were approximated by the lnp(1/T) equation, from which the thermodynamic parameters (∆prH°T and ∆prS°T) of the process of b-cyclodextrin hydrate dehydration were calculated. This information was used to estimate the binding energies of the water molecules to the b-CD framework
Downloads
References
Jambhekar S. S., Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today. 2016;21(2): 356–362. https://doi.org/10.1016/j.drudis.2015.11.017
Jansook P., Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics. 2018;535: 272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018
Lachowicz M., Stańczak A., Kołodziejczyk M. Characteristic of cyclodextrins: their role and use in the pharmaceutical technology. Current Drug Targets. 2020;21: 1495–1510. https://doi.org/10.2174/1389450121666200615150039
Matencio A., Navarro-Orcajada S., García-Carmona F., Lopez-Nicolas J. M. Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology. 2020;104: 132–143. https://doi.org/10.1016/j.tifs.2020.08.009
Gonzalez Pereira A., Carpena M., García Oliveira P., Mejuto J. C., Prieto M. A., Simal J. Gandara main applications of cyclodextrins in the food industry as the compounds of choice to form host-guest complexes. International Journal of Molecular Sciences. 2021;22(3): 1339. https://doi.org/10.3390/ijms22031339
Adeoye O., Figueiredo A., Cabral Marques H. Cyclodextrins and skin disorders: therapeutic and cosmetic applications. Chapter 13 In: Carrier-mediated dermal delivery. Ascenso A, Ribeiro H, Simões S (eds.). New York: Jenny Stanford Publishing; 2017. 586 p. https://doi.org/10.4324/9781315364476
Jicsinszky L., Cravotto G. Cyclodextrins in skin formulations and transdermal delivery. Journal of Skin and Stem Cell. 2019;6(4): e102561. https://doi.org/10.5812/jssc.102561
Szente L., Szeman J. Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Analytical Chemistry. 2013;85(17): 8024–8030. https://doi.org/10.1021/ac400639y
Rousseau J., Menuel S., Rousseau C., Hapiot F., Monflier E. Chapter 2 - Cyclodextrins as porous material for catalysis. In: Organic nanoreactors. Elsevier Inc.; 2016. 582 p. https://doi.org/10.1016/B978-0-12-801713-5.00002-1
Bai C. C., Tian B. R., Zhao T., Huang Q., Wang Z. Z. Cyclodextrin-catalyzed organic synthesis: reactions, mechanisms, and applications. Molecules. 2017;22(9): 1475. https://doi.org/10.3390/molecules22091475
Dalal D. S., Patil D. R., Tayade Y. A. b-cyclodextrin: a green and efficient supramolecular catalyst for organic transformations. The Chemical Record. 2018;18(11): 1560–1582. https://doi.org/10.1002/tcr.201800016
Mitra B., Pariyar G. Ch., Ghosh P. b-cyclodextrin: a supramolecular catalyst for metal-free approach towards the synthesis of 2-amino-4,6-diphenylnicotinonitriles and 2,3-dihydroquinazolin-4(1H)-one. RSC Advances. 2021;11: 1271–1281. https://doi.org/10.1039/d0ra09562a
Wren S., Berger T. A., Boos K.-S., … Stock R. The use of cyclodextrins as chiral selectors. In: Berger T. A., et al. The separation of enantiomers by capillary electrophoresis. Chromatographia CE Series. Wiesbaden: Vieweg+Teubner Verlag; 2001;6: 59–77. https://doi.org/10.1007/978-3-322-83141-5_5
Wang Y., Sun Y., Bian H., Zhu L., Xia D., Wang H. Cyclodextrin porous liquid materials for efficient chiral recognition and separation of nucleosides. ACS Applied Materials & Interfaces. 2020;12(41): 45916–45928. https://doi.org/10.1021/acsami.0c15836
Yu R. B., Quirino J. P. Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating. Journal of Separation Science. 2022;45(6): 1142–1291. https://doi.org/10.1002/jssc.202100835
Decool G., Kfoury M., Paitel L., Sardo A., Fourmentin S. Cyclodextrins as molecular carriers for biopesticides: a review. Environmental Chemistry Letters. 2024;22: 321–353. https://doi.org/10.1007/s10311-023-01658-3
Morin-Crini N., Fourmentin S., Fenyvesi É., … Crini G. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environmental Chemistry Letters. 2021;19: 2581–2617. https://doi.org/10.1007/s10311-020-01156-w
Poulson B. G., Alsulami Q. A., Sharfalddin A., … Jaremko M. Cyclodextrins: structural, chemical, and physical properties, and applications. Polysaccharides. 2022;3(1): 1–31. https://doi.org/10.3390/polysaccharides3010001
Amiri S., Amiri S. Cyclodextrins: properties and industrial applications. First Editio: JohnWiley & Sons Ltd. Published by JohnWiley & Sons Ltd.; 2017. 320 p. https://doi.org/10.1002/9781119247609
Lindner K., Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydrate Research. 1982;99: 103–115. https://doi.org/10.1016/s0008-6215(00)81901-1
Betzel C., Saenger W., Hingerty B. E., Brown G. M. Circular and flip-flop hydrogen bonding in b-cyclodextrin undecahydrate: a neutron diffraction study. Journal of the American Chemical Society. 1984;106: 7545–7557. https://doi.org/10.1021/ja00336a039
Li J-Y., Sun D-F., Hao A-Y., Sun H-Y., Shen J. Crystal structure of a new cyclomaltoheptaose hydrate: b-cyclodextrin·7.5H2O. Carbohydrate Research. 2010;345: 685–688. https://doi.org/10.1016/j.carres.2009.12.016
Steiner T., Koellner G., Ali S., Zakim D., Saenger W. Crystalline β-cyclodextrin·12 H2O reversibly dehydrates to b-cyclodextrin·10.5 H2O under ambient conditions. Biochemical and Biophysical Researc. 1992;188(3): 1060-1066. https://doi.org/10.1016/0006-291x(92)91339-r
Steiner T., Koellner G. Crystalline b-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society. 1994;116: 5112–5128. https://doi.org/10.1021/ja00091a014
Ripmeester J. A. Crystalline b-cyclodextrin hydrate is non-stoichiometric with 10.5-12 waters per cyclodextrin molecule. Supramolecular Chemistry. 1993;2: 89–91. https://doi.org/10.1080/10610279308038301
Marini A., Berbenni V., Bruni G., Massarotti V., Mustarelli P., Villa M. Dehydration of the cyclodextrins: a model system for the interactions of biomolecules with water. The Journal of Chemical Physics. 1995;103(17): 7532–7540. https://doi.org/10.1063/1.470321
Szafranek A. Kinetic parameters of thermal decomposition of complex of b-cyclodextrin with water. Journal of Thermal Analysis. 1988;34: 917-926. https://doi.org/10.1007/BF01913497
Kohata S., Jyodoi K., Ohyoshi A. Thermal decomposition of cyclodextrins (a-, b-, g-, and modified b-CyD) and of metal—(b-CyD) complexes in the solid phase. Thermochimica Acta. 1993;217: 187–198. https://doi.org/10.1016/0040-6031(93)85107-K
Specogna E., Li K., Djabourov M., Carn F., Bouchemal K. Dehydration, Dissolution, and melting of cyclodextrin crystals. The Journal of Physical Chemistry B. 2015;119: 1433–1442. https://doi.org/10.1021/jp511631e
Claudy P., Germain P., Letoffe J. M., Bayol A., Gonzalez B. Étude thermodynamique de la éation d’hydratation de la b-cyclodextrine. Thermochimica Acta. 1990;161: 75–84. https://doi.org/10.1016/0040-6031(90)80288-A
Bettinetti G., Novák C. S., Sorrenti M. Thermal and structural characterization of commercial a-, b-, and g-cyclodextrins. Journal of Thermal Analysis and Calorimetry. 2002;68: 517–529. https://doi.org/10.1023/a:1016043920156
Zelenina L. N., Chusova T. P., Isakov A. V., Rodionova T. V., Villevald G. V., Manakov A. Yu. Thermodynamic investigation of water evaporation process from a-cyclodextrin hydrate. The Journal of Chemical Thermodynamics. 2021;158: 106424. https://doi.org/10.1016/j.jct.2021.106424
CHEKCELL program. Available at: http://www.cristal.org/SDPD-list/2000/msg00084.html
Roisnel T., Rodriguez-Carvajal J. WinPLOTR: a windows tool for powder diffraction patterns analysis. Materials Science Forum. 2001;378-381: 118–123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118
Suvorov A. V. Thermodynamic chemistry of the vapor state*. Leningrad: Khimiya Publ.; 1970. 208 p. (In Russ.)
Zelenina L. N, Chusova T. P, Vasilyeva I. G. Thermodynamic investigation of phase formation processes in the systems LnSe2–LnSe1.5 (Ln = La, Ce, Pr, Nd). The Journal of Chemical Thermodynamics. 2013;57: 101–107. https://doi.org/10.1016/j.jct.2012.08.005
Zelenina L. N., Chusova T. P., Sapchenko S. A., Ukraintseva E. A., Samsonenko D. G., Fedin V. P. Thermodynamic study of sorption processes of gaseous benzene and water on metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. The Journal of Chemical Thermodynamics. 2013;67: 128–133. https://doi.org/10.1016/j.jct.2013.07.021
Zelenina L. N., Chusova T. P., Isakov A. V., Adonin S. A., Sokolov M. N., Thermodynamic study of bromine evaporation from solid Bi(III) polybromides. The Journal of Chemical Thermodynamics. 2020;141: 105958. https://doi.org/10.1016/j.jct.2019.105958
Wongmekiat A., Tozuka Y., Oguchi T., Yamamoto K. Formation of fine drug particles by cogrinding with cyclodextrins. I. The use of b-cyclodextrin anhydrate and hydrate. Pharmaceutical Research. 2002;19(12): 1867–1872. https://doi.org/10.1023/a:1021401826554
Titov V. A., Kokovin G. A. in coll. Mathematical methods and chemical thermodynamics*. Novosibirsk: Nauka Publ.; 1980. 205 p. (In Russ.)
Zelenina L. N., Chusova T. P. Tensimetric study of the tris(2,2,6,6-tetramethylheptan-3,5-dionato)yttrium(III) dissociation in a gas phase. Russian Journal of General Chemistry. 2021;91(10): 1541–1547. https://doi.org/10.1134/s1070363221100091
Gurvich L. V. IVTANTERMO, automated system of data on thermodynamic properties of substances*. Vest. AN SSSR = Proceedings of the Academy of Sciences of the USSR. 1983;3: 54. (In Russ.)
Manakov A. Yu., Rodionova T. V., Aladko L. S., … Karpova T. D. a-cyclodextrin – water binary system. New data on dehydration of a-cyclodextrin hexahydrate. The Journal of Chemical Thermodynamics. 2016;101: 251–259. https://doi.org/10.1016/j.jct.2016.06.008
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.