Physicochemical study of the processes of b-cyclodextrin hydrates dehydration

  • Lyudmila N. Zelenina Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation; Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russian Federation https://orcid.org/0000-0002-5027-5278
  • Tatyana V. Rodionova Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation https://orcid.org/0000-0001-8989-1900
  • Tamara P. Chusova Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation https://orcid.org/0000-0001-5246-0138
  • Anastasia V. Sartakova Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation; Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russian Federation
  • Andrey Yu. Manakov Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation https://orcid.org/0000-0003-0214-8714
Keywords: b-cyclodextrin hydrates, PXRD, Static tensimetry, Saturated vapor pressure, Dehydration enthalpy and entropy

Abstract

The research involved synthesizing b-cyclodextrin hydrates of the b-CD·nH2O (n = 11.9–0.9) composition.

The obtained compounds were studied by powder X-ray diffraction (XRD), which revealed the transition from a monoclinic unit cell to an orthorhombic one with a decrease in the water content in the samples. The pressure of saturated vapor of the water in the b-CD·nH2O (n = 10.6–7.0) hydrates was measured by static tensimetry with membrane null-manometer over a wide temperature range (293–384 K) under conditions of a quasi-constant hydrate composition. The measured vapor pressure increases in proportion to the increase in the water content of the hydrate samples.

The experimental data reduced to a single composition of b-CD·1H2O were approximated by the lnp(1/T) equation, from which the thermodynamic parameters (∆prH°T and ∆prS°T) of the process of b-cyclodextrin hydrate dehydration were calculated. This information was used to estimate the binding energies of the water molecules to the b-CD framework

Downloads

Download data is not yet available.

Author Biographies

Lyudmila N. Zelenina, Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation; Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russian Federation

Cand. Sci. (Chem.), Research Fellow at the Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Senior Lecturer, Novosibirsk State University (Novosibirsk, Russian Federation)

Tatyana V. Rodionova, Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation

Cand. Sci. (Chem.), Research Fellow at the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russian Federation)

Tamara P. Chusova, Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation

Cand. Sci. (Chem.), Research Fellow at the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russian Federation)

Anastasia V. Sartakova, Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation; Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russian Federation

5th year student of the Faculty of Natural Sciences, Novosibirsk State University (Novosibirsk, Russian Federation)

Andrey Yu. Manakov, Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 3 Lavrent’ev ave., Novosibirs 630090, Russian Federation

Dr. Sci. (Chem.), Chief Researcher at the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russian Federation)

References

Jambhekar S. S., Breen P. Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today. 2016;21(2): 356–362. https://doi.org/10.1016/j.drudis.2015.11.017

Jansook P., Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics. 2018;535: 272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018

Lachowicz M., Stańczak A., Kołodziejczyk M. Characteristic of cyclodextrins: their role and use in the pharmaceutical technology. Current Drug Targets. 2020;21: 1495–1510. https://doi.org/10.2174/1389450121666200615150039

Matencio A., Navarro-Orcajada S., García-Carmona F., Lopez-Nicolas J. M. Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology. 2020;104: 132–143. https://doi.org/10.1016/j.tifs.2020.08.009

Gonzalez Pereira A., Carpena M., García Oliveira P., Mejuto J. C., Prieto M. A., Simal J. Gandara main applications of cyclodextrins in the food industry as the compounds of choice to form host-guest complexes. International Journal of Molecular Sciences. 2021;22(3): 1339. https://doi.org/10.3390/ijms22031339

Adeoye O., Figueiredo A., Cabral Marques H. Cyclodextrins and skin disorders: therapeutic and cosmetic applications. Chapter 13 In: Carrier-mediated dermal delivery. Ascenso A, Ribeiro H, Simões S (eds.). New York: Jenny Stanford Publishing; 2017. 586 p. https://doi.org/10.4324/9781315364476

Jicsinszky L., Cravotto G. Cyclodextrins in skin formulations and transdermal delivery. Journal of Skin and Stem Cell. 2019;6(4): e102561. https://doi.org/10.5812/jssc.102561

Szente L., Szeman J. Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Analytical Chemistry. 2013;85(17): 8024–8030. https://doi.org/10.1021/ac400639y

Rousseau J., Menuel S., Rousseau C., Hapiot F., Monflier E. Chapter 2 - Cyclodextrins as porous material for catalysis. In: Organic nanoreactors. Elsevier Inc.; 2016. 582 p. https://doi.org/10.1016/B978-0-12-801713-5.00002-1

Bai C. C., Tian B. R., Zhao T., Huang Q., Wang Z. Z. Cyclodextrin-catalyzed organic synthesis: reactions, mechanisms, and applications. Molecules. 2017;22(9): 1475. https://doi.org/10.3390/molecules22091475

Dalal D. S., Patil D. R., Tayade Y. A. b-cyclodextrin: a green and efficient supramolecular catalyst for organic transformations. The Chemical Record. 2018;18(11): 1560–1582. https://doi.org/10.1002/tcr.201800016

Mitra B., Pariyar G. Ch., Ghosh P. b-cyclodextrin: a supramolecular catalyst for metal-free approach towards the synthesis of 2-amino-4,6-diphenylnicotinonitriles and 2,3-dihydroquinazolin-4(1H)-one. RSC Advances. 2021;11: 1271–1281. https://doi.org/10.1039/d0ra09562a

Wren S., Berger T. A., Boos K.-S., … Stock R. The use of cyclodextrins as chiral selectors. In: Berger T. A., et al. The separation of enantiomers by capillary electrophoresis. Chromatographia CE Series. Wiesbaden: Vieweg+Teubner Verlag; 2001;6: 59–77. https://doi.org/10.1007/978-3-322-83141-5_5

Wang Y., Sun Y., Bian H., Zhu L., Xia D., Wang H. Cyclodextrin porous liquid materials for efficient chiral recognition and separation of nucleosides. ACS Applied Materials & Interfaces. 2020;12(41): 45916–45928. https://doi.org/10.1021/acsami.0c15836

Yu R. B., Quirino J. P. Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating. Journal of Separation Science. 2022;45(6): 1142–1291. https://doi.org/10.1002/jssc.202100835

Decool G., Kfoury M., Paitel L., Sardo A., Fourmentin S. Cyclodextrins as molecular carriers for biopesticides: a review. Environmental Chemistry Letters. 2024;22: 321–353. https://doi.org/10.1007/s10311-023-01658-3

Morin-Crini N., Fourmentin S., Fenyvesi É., … Crini G. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environmental Chemistry Letters. 2021;19: 2581–2617. https://doi.org/10.1007/s10311-020-01156-w

Poulson B. G., Alsulami Q. A., Sharfalddin A., … Jaremko M. Cyclodextrins: structural, chemical, and physical properties, and applications. Polysaccharides. 2022;3(1): 1–31. https://doi.org/10.3390/polysaccharides3010001

Amiri S., Amiri S. Cyclodextrins: properties and industrial applications. First Editio: JohnWiley & Sons Ltd. Published by JohnWiley & Sons Ltd.; 2017. 320 p. https://doi.org/10.1002/9781119247609

Lindner K., Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydrate Research. 1982;99: 103–115. https://doi.org/10.1016/s0008-6215(00)81901-1

Betzel C., Saenger W., Hingerty B. E., Brown G. M. Circular and flip-flop hydrogen bonding in b-cyclodextrin undecahydrate: a neutron diffraction study. Journal of the American Chemical Society. 1984;106: 7545–7557. https://doi.org/10.1021/ja00336a039

Li J-Y., Sun D-F., Hao A-Y., Sun H-Y., Shen J. Crystal structure of a new cyclomaltoheptaose hydrate: b-cyclodextrin·7.5H2O. Carbohydrate Research. 2010;345: 685–688. https://doi.org/10.1016/j.carres.2009.12.016

Steiner T., Koellner G., Ali S., Zakim D., Saenger W. Crystalline β-cyclodextrin·12 H2O reversibly dehydrates to b-cyclodextrin·10.5 H2O under ambient conditions. Biochemical and Biophysical Researc. 1992;188(3): 1060-1066. https://doi.org/10.1016/0006-291x(92)91339-r

Steiner T., Koellner G. Crystalline b-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society. 1994;116: 5112–5128. https://doi.org/10.1021/ja00091a014

Ripmeester J. A. Crystalline b-cyclodextrin hydrate is non-stoichiometric with 10.5-12 waters per cyclodextrin molecule. Supramolecular Chemistry. 1993;2: 89–91. https://doi.org/10.1080/10610279308038301

Marini A., Berbenni V., Bruni G., Massarotti V., Mustarelli P., Villa M. Dehydration of the cyclodextrins: a model system for the interactions of biomolecules with water. The Journal of Chemical Physics. 1995;103(17): 7532–7540. https://doi.org/10.1063/1.470321

Szafranek A. Kinetic parameters of thermal decomposition of complex of b-cyclodextrin with water. Journal of Thermal Analysis. 1988;34: 917-926. https://doi.org/10.1007/BF01913497

Kohata S., Jyodoi K., Ohyoshi A. Thermal decomposition of cyclodextrins (a-, b-, g-, and modified b-CyD) and of metal—(b-CyD) complexes in the solid phase. Thermochimica Acta. 1993;217: 187–198. https://doi.org/10.1016/0040-6031(93)85107-K

Specogna E., Li K., Djabourov M., Carn F., Bouchemal K. Dehydration, Dissolution, and melting of cyclodextrin crystals. The Journal of Physical Chemistry B. 2015;119: 1433–1442. https://doi.org/10.1021/jp511631e

Claudy P., Germain P., Letoffe J. M., Bayol A., Gonzalez B. Étude thermodynamique de la éation d’hydratation de la b-cyclodextrine. Thermochimica Acta. 1990;161: 75–84. https://doi.org/10.1016/0040-6031(90)80288-A

Bettinetti G., Novák C. S., Sorrenti M. Thermal and structural characterization of commercial a-, b-, and g-cyclodextrins. Journal of Thermal Analysis and Calorimetry. 2002;68: 517–529. https://doi.org/10.1023/a:1016043920156

Zelenina L. N., Chusova T. P., Isakov A. V., Rodionova T. V., Villevald G. V., Manakov A. Yu. Thermodynamic investigation of water evaporation process from a-cyclodextrin hydrate. The Journal of Chemical Thermodynamics. 2021;158: 106424. https://doi.org/10.1016/j.jct.2021.106424

CHEKCELL program. Available at: http://www.cristal.org/SDPD-list/2000/msg00084.html

Roisnel T., Rodriguez-Carvajal J. WinPLOTR: a windows tool for powder diffraction patterns analysis. Materials Science Forum. 2001;378-381: 118–123. https://doi.org/10.4028/www.scientific.net/msf.378-381.118

Suvorov A. V. Thermodynamic chemistry of the vapor state*. Leningrad: Khimiya Publ.; 1970. 208 p. (In Russ.)

Zelenina L. N, Chusova T. P, Vasilyeva I. G. Thermodynamic investigation of phase formation processes in the systems LnSe2–LnSe1.5 (Ln = La, Ce, Pr, Nd). The Journal of Chemical Thermodynamics. 2013;57: 101–107. https://doi.org/10.1016/j.jct.2012.08.005

Zelenina L. N., Chusova T. P., Sapchenko S. A., Ukraintseva E. A., Samsonenko D. G., Fedin V. P. Thermodynamic study of sorption processes of gaseous benzene and water on metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. The Journal of Chemical Thermodynamics. 2013;67: 128–133. https://doi.org/10.1016/j.jct.2013.07.021

Zelenina L. N., Chusova T. P., Isakov A. V., Adonin S. A., Sokolov M. N., Thermodynamic study of bromine evaporation from solid Bi(III) polybromides. The Journal of Chemical Thermodynamics. 2020;141: 105958. https://doi.org/10.1016/j.jct.2019.105958

Wongmekiat A., Tozuka Y., Oguchi T., Yamamoto K. Formation of fine drug particles by cogrinding with cyclodextrins. I. The use of b-cyclodextrin anhydrate and hydrate. Pharmaceutical Research. 2002;19(12): 1867–1872. https://doi.org/10.1023/a:1021401826554

Titov V. A., Kokovin G. A. in coll. Mathematical methods and chemical thermodynamics*. Novosibirsk: Nauka Publ.; 1980. 205 p. (In Russ.)

Zelenina L. N., Chusova T. P. Tensimetric study of the tris(2,2,6,6-tetramethylheptan-3,5-dionato)yttrium(III) dissociation in a gas phase. Russian Journal of General Chemistry. 2021;91(10): 1541–1547. https://doi.org/10.1134/s1070363221100091

Gurvich L. V. IVTANTERMO, automated system of data on thermodynamic properties of substances*. Vest. AN SSSR = Proceedings of the Academy of Sciences of the USSR. 1983;3: 54. (In Russ.)

Manakov A. Yu., Rodionova T. V., Aladko L. S., … Karpova T. D. a-cyclodextrin – water binary system. New data on dehydration of a-cyclodextrin hexahydrate. The Journal of Chemical Thermodynamics. 2016;101: 251–259. https://doi.org/10.1016/j.jct.2016.06.008

Published
2024-11-12
How to Cite
Zelenina, L. N., Rodionova, T. V., Chusova, T. P., Sartakova, A. V., & Manakov, A. Y. (2024). Physicochemical study of the processes of b-cyclodextrin hydrates dehydration. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(4), 716-724. https://doi.org/10.17308/kcmf.2024.26/12435
Section
Original articles