Phase diagram of the system Na2SO4 – In2(SO4)3. Comparative analysis of Na2SO4 – R2(SO4)3 systems (R = Al, Ga, Fe, In, Sc, Yb)
Abstract
Purpose: The phase diagram of the system of sodium sulfate with indium sulfate has been studied for the first time.
Experimental: Thermal and X-ray phase analysis (XRD) techniques, including high-temperature analysis, were used.
Conclusions: In the Na2SO4 - In2(SO4)3 system determined a several substances. The NaInSO4 compound incongruently melted at 800 °C. The Na3In(SO4)3 compound has polymorphic transformations at 210 and 580 °C, and decomposes in the solid state at 680 °C. The compound containing 7±1 mol. % In2(SO4)3 (φ phase), changing to the solid solution at 540 °C. The eutectic coordinates are 710 °C, 18 mol. % In2(SO4)3. The solid solution region based on α-Na2SO4 is 11±1 mol. % In2(SO4)3. The solid solution melting curves show a maximum at 895 °C and 3 mol. % In2(SO4)3. According to XRD data, the NaInSO4 compound crystallizes in the structural type of javapaite - KFe(SO4)2 (monoclinic space group (C2/m) with lattice parameters a = 8.024 Å, b = 5.069 Å, c = 7.211 Å, β = 90.6°), and is isostructural to compounds of similar composition with aluminum, gallium, iron, chromium, vanadium and rhodium sulfates. Low-temperature modification Na3In(SO4)3 crystallizes in trigonal space group (R-3) with lattice parameters a = 13.970 Å, c = 8.871 Å), and is isostructurally similar to similar compounds with sulfates of aluminum, gallium, iron (III), vanadium, rhodium, scandium. X-ray diffraction pattern of the mid-temperature modification Na3In(SO4)3 is indexed in monoclinic space group (P21/c) with lattice parameters a = 16.187(4) Å, b = 13.584(3) Å,
c = 9.639(2) Å, β = 91.6°. The X-ray diagram of the φ phase is indexed in monoclinic space group (P21/c) with lattice parameters a = 7.836 Å, b = 14.845 Å, c = 4.57 Å, β = 91.14º
Downloads
References
Ivanov-Shchits A. K., Murin I. V. Solid state ionics*. Saint Petersburg: SPbU Publ.; Vol. 1. 2000. Vol. 2. 2010. (In Russ.)
Yaroslavtsev A. B. Solid electrolytes: main prospects of research and development. Russian Chemical Reviews. 2016;85(11): 1255–1276. https://doi.org/10.1070/rcr4634
Skundin A. M., Kulova T. L., Yaroslavtsev A. B. Sodiumion batteries (a review). Russian Journal of electrochemistry. 2018; 54(2): 113–152. https://doi.org/10.1134/s1023193518020076
Heed B., Lunden A., Schroeder K. Sulphate-based solid electrolytes: properties and applications. Electrochimica Acta. 1977;22: 705–707. https://doi.org/10.1016/0013-4686(77)80022-4
Lunden A. Enhancement of cation mobility in some sulphate phases due to a paddle wheel mechanism. Solid State Ionics. 1998;28-30: 163–167. https://doi.org/10.1016/s0167-2738(88)80026-2
Eysel W., Hofer H. H., Keester K. L., Hahn Th. Crystal chemistry and structure of Na2SO4(I) and its solid solutions. Acta Crystallographica Section B Structural Science. 1985;41: 5–11. https://doi.org/10.1107/s0108768185001501
Fedorov P. P., Polkhovskaya T. M., Sobolev B. P., Ivanov-Shits A. K., Sorokin N. I. Growing Na2SO4:Nd3+ single crystals and studying its electrical conductivity*. Soviet Physics. Crystallography. 1983;28(3): 598-599. (In Russ.)
Sorokin N. I., Proydakova V. Yu., Voronov V. V., Kuznetsov S. V., Fedorov P. P. Electrical сonductivity of sodium sulfate-based phases. Inorganic Materials. 2022;58(8): 806–813. https://doi.org/10.1134/s0020168522080118
Voskresenskaya N. K., Evseeva N. N., Berul S. I., Vereshchetina I. P. Handbook on the fusibility of systems made of anhydrous inorganic salts*. Moscow-Leningrad: USSR Academy of Sciences Publ.; 1961. 846 p. (In Russ.)
Fedorov P. P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russian Journal of Inorganic Chemistry. 2000;45(Suppl. 3): S268–S291. EDN: LGJRLF. Available at: https://elibrary.ru/lgjrlf
Fedorov P. I, Zhang Chi-yuyin. The Na+, Al3+ // SO4 2-system*. Russian Journal of Inorganic Chemistry. 1966;11(3): 669–671. (In Russ.)
Bolshakov K. A., Fedorov P. I., Ilyina N. I. Binary systems of sodium sulfate with copper (II) and iron (III) sulfates*. Russian Journal of Inorganic Chemistry. 1963;8(11): 2577–2579. (In Russ.)
Pokrovsky A. N. Synthesis, structure and properties of anhydrous double sulfates of lanthanides and elements of group Ia*. Dr. chem. sci. diss. Moscow: Moscow State University Publ.; 1981. 327 p. (In Russ.)
Fedorov P. I., Fedorov P. P. Sodium sulfate - thorium sulfate system. Russian Journal of Inorganic Chemistry. 2001;46(9): 1422–1423. Available at: https://elibrary.ru/item.asp?id=13367703
Fedorov P. P., Proidakova V. Yu., Kuznetsov S. V., Voronov V. V. Phase equilibria in systems of gallium sulfate with lithium or sodium sulfate. Russian Journal of Inorganic Chemistry. 2017:62(11): 1508–1513. https://doi.org/10.1134/s0036023617110067
Kochubey L. A., Margulis E. V., Vershinina F. I., Vorobyova L. V. The Na2SO4-Bi2(SO4)3 system*. Russian journal of Inorganic Chemistry. 1981;26: 2881-2883. (In Russ.)
Perret R., Tudo J., Jolibois B., Couchot P. Preparation et characterization cristallographique de quelques sulfates doubles d’indium (III) et de thallium(III), MI 3MIII(SO4)3 (MI =Na, K, Rb et Cs). Journal of the Less Common Metals. 1974;37(1): 9–12. https://doi.org/10.1016/0022-5088(74)90003-4
Krause M., Gruehn R. Contributions on the thermal behavior of sulphates XVII. Single crystal structure refinements of In2(SO4)3 and Ga2(SO4)3. Zeitschrift für Kristallographie – Crystalline Materials. 1995;210: 427–431. https://doi.org/10.1524/zkri.1995.210.6.427
Proidakova V. Yu., Kuznetsov S. V., Voronov V. V., Fedorov P. P. Synthesis of gallium sulfate. Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies]. 2017;12(3): 52–57. Available at: https://elibrary.ru/zbmoyn
Fedorov P. I., Fedorov P. P., Drobot D. V. Physicochemical analysis of anhydrous salt systems*. Moscow: MIHM Publ.; 1987. 90 p. (In Russ.)
Fedorov P. P, Medvedeva L. V. On thermographic determination of liquidus temperatures*. Russian Journal of Inorganic Chemistry. 1989;34(10): 2674–2677. (In Russ.)
Perret R., Couchot P. Preparation et caracterisation de quelques “aluns anhydres” de sodium. Comptes Rendus de Academie des Sciences. Paris. 1972;C274: 363–369.
Perret R., Devaux M. Identificatiion cristallochimique de quelques composes anhydres du sulfate de rhodium. Journal of the Less Common Metals. 1975;42: 43–50. https://doi.org/10.1016/0022-5088(75)90018-1
Ferhmann R., Boghosian S., Papatheodorou G. N., Nielsen K., Berg R.W., Bjerrum N. J. The crystal structure of NaV(SO4)2. Acta Chemica Scandinavica. 1991;45: 861–964. https://doi.org/10.3891/acta.chem.scand.45-0961
Graeber E .J., Rozenzweig A. The crystal structure of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2·4H2O. American Mineralogist, 1971;56: 1917–1933.
Boghosian S., Ferhmann R., Nielsen K., … Francis G. W. Synthesis and crystal structure of Na3V(SO4)3. Spectroscopic Characterization of Na3V(SO4)3 and NaV(SO4)2. Acta Chemica Scandinavica. 1994;48: 724–731. https://doi.org/10.3891/acta.chem.scand.48-0724
Shannon R. D. Revised effective ionic radii in halides and chalcogenides. Acta Crystallographica Section A. 1976; A32: 751–767. https://doi.org/10.1107/s0567739476001551
Fedorov P. P., Sobolev B. P., Fedorov P. On the influence of ionic radii on the formation of heterovalent solid solutions with a change in the number of atoms in the unit cell. Soviet Physics. Crystallography. 1981;26: 291–295.
Fedorov P. P., Sobolev B. P. On the conditions of formation of maxima on melting curves of solid solutions in salt systems*. Russian Journal of Inorganic Chemistry. 1979;24(4): 1038–1040. (In Russ.)
Fedorov P. P. Concerning the incorporation of divalent cations into the high-temperature modification of Li2SO4. Solid State Ionics 1996;84: 113–115. https://doi.org/10.1016/S0167-2738(96)83013-X
Proydakova V. Yu., Voronov V. V., Pynenkov A. A., … Fedorov P. P. Sodium sulfate polymorphism. Russian Journal of Inorganic Chemistry. 2022;67(7): 970–977. https://doi.org/10.1134/s0036023622070208
Tsvetkov V. B., Proydakova V. Yu., Kuznetsov S. V., … Fedorov P. P. Growth of Yb : Na2SO4 crystals and study of their spectral – luminescent characteristics. Quantum Electronics. 2019;49(11): 1008–1010. https://doi.org/10.1070/qel17107
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.