Фазы со слоистыми (AB) и «дефектными» (A2B3) структурами в системах AIII– BVI. Часть 2. Фазовые диаграммы и подходы к некоторым задачам воспроизводимого синтеза в системах AIII–BVI. Обзор

  • Александр Юрьевич Завражнов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-0241-834X
  • Николай Юрьевич Брежнев ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I», ул. Мичурина, 1, Воронеж 394087, Российская Федерация https://orcid.org/0000-0002-3287-8614
  • Иван Николаевич Некрылов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-4491-4739
  • Андрей Викторович Косяков ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-9662-7091
Ключевые слова: халькогениды, A(III)B(VI), стехиометрические вакансии, фазовые диаграммы, фазовые равновесия

Аннотация

В работе проводится анализ фазовых диаграмм систем AIII – BVI и фазовых равновесий с участием кристаллических соединений, образующихся в этих системах. Детально обсуждается место на T-x-диаграмме каждой твердой бинарной фазы – прежде всего, относящихся к семействам моно- и сескви- сульфидов и селенидов алюминия, галлия и индия. При наличии необходимых данных проанализированы и области гомогенности этих фаз. Для полиморфных (или близких к ним) превращений описан характер происходящих структурных превращений и проанализирована температурная устойчивость различных модификаций близкого состава. На примерах нескольких систем показано, как изменяя условия эксперимента, можно воспроизводимо получать соединения с требуемой структурой (даже для разных политипов структур с очень близким строением отдельных слоев) и требуемым составом (в т. ч., и в пределах областей гомогенности фаз). Рассматриваются различные способы воспроизводимого неорганического синтеза с учетом особенностей фазовой диаграммы и фазовых равновесий. В заключении анализируются актуальные и частично до сих пор нерешенные вопросы, касающиеся особенностей соединений A2IIIB3VI и A1IIIB1VI

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Александр Юрьевич Завражнов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., профессор кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Николай Юрьевич Брежнев, ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I», ул. Мичурина, 1, Воронеж 394087, Российская Федерация

старший преподаватель кафедры химии, Воронежский государственный аграрный университет (Воронеж, Российская Федерация)

Иван Николаевич Некрылов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

ассистент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Андрей Викторович Косяков, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. х. н., доцент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Литература

Piacente V., Bardi G., Di Paolo V., Ferro D. The vapour pressure over Ga2S2 and Ga2Se2. The Journal of Chemical Thermodynamics. 1976;8(4): 391–401. https://doi.org/10.1016/0021-9614(76)90080-x

Murakami T., Shibata N. The action of sulfur against metals at high temperatures. 3-rd report. The action of sulfur against aluminum alloys. Nippon Kinzoku Gakk. 1940;4: 221–228. https://doi.org/10.2320/jinstmet1937.4.8_221

Shi С., Yang B., Hu B., Du Y., Yao S. Thermodynamic description of the Al–X (X = S, Se, Te) systems. Journal of Phase Equilibria and Diffusion. 2019;40: 392–402. https://doi.org/10.1007/s11669-019-00733-z

Kohlmeyer E. J., Retzlaff H. W. Aluminum sulfide, silicon sulfide and the Al – Si – S system. Zeitschrift für anorganische Chemie. 1950;261: 248–260. https://doi.org/10.1002/zaac.19502610314

Forland T., Gomez J., Ratkje S. K., Ostvold T. Measurements of phase equilibria in the aluminumaluminum sulfide system. Acta Chemica Scandinavica. 1974;28a(2): 226–228. https://doi.org/10.3891/acta.chem.scand.28a-0226

Sharma R. C., Chang Y. A., The Al – S (aluminumsulfur) system. Journal of Phase Equilibria. 1987;8(2): 128–131. https://doi.org/10.1007/BF02873197

Flahaut J. A variety of aluminum sulfide stable at high temperature. Comp. Rend. 1951;232: 2100–2102.

Flahaut. J. Contribution a l’e´tude du sulfure d’aluminium. Annales de Chimie. 1952;12: 632–696.

Huda N. , Rhamdhani M. A. , Brooks G. A. , Monaghan B. J., Prentice L. Aluminium production route through carbosulfidation of alumina utilizing H2S. In: Light Metals. B. A. Sadler (ed.). 2013: 1299–1304. https://doi.org/10.1007/978-3-319-65136-1_219

Ramadhan M. R., Khansa S. A., Zulindra Q., Handayania D. P., Wardania N. A., Astuti F. Electronic structure calculation of α-Al2X3 system (X = O, S) based on r++scan functional. East European Journal of Physics. 2023;4: 210–215. https://doi.org/10.26565/2312-4334-2023-4-26

Shimomura Y., Ohno S., Hayashi K., Akamatsu H. Quadruple-well ferroelectricity and moderate switching barrier in defective wurtzite α-Al2S3: a first-principles study. arXiv: Condensed Matter – Materials Science. 2024;2406.04084: 1-35. https://doi.org/10.48550/arXiv.2406.04084

Rhamdhani M. A., Huda N., Khaliq A., … Prentice L. Novel multi-stage aluminium production: part 1 –thermodynamic assessment of car-bosulphidation of Al2O3/bauxite using H2S and sodiothermic reduction of Al2S3. Mineral Processing and Extractive Metallurgy. 2017;127: 1–12. https://doi.org/10.1080/03719553.2017.1293352

Klimpel M., Kovalenko M. V., Kravchyk K. V. Advances and challenges of aluminum–sulfur batteries. ommunications Chemistry. 2022;77(5): 1–12. https://doi.org/10.1038/s42004-022-00693-5

Meng J., Hong X., Xiao Z. Rapid-charging aluminiumsulfur batteries operated at 85 °C with a quaternary olten

salt electrolyte. Nature Communications. 2024;15(596): 1–10. https://doi.org/10.1038/s41467-024-44691-8

Gordon L. W., Jay R., Jadhav A. L., Bhalekar S. S., Messinger R. J. Elucidating consequences of selenium crystallinity on its electrochemical reduction in aluminum–selenium batteries. ACS Materials Letters. 2024;6(7): 2577–2581. https://doi.org/10.1021/acsmaterialslett.4c00531

Wu S. C., Ai Y., Chen Y.-Z. High-performance rechargeable aluminum−selenium battery with a new deep eutectic solvent electrolyte: thiourea – AlCl3. ACS Materials Letters. 2020;12: 27064−27073. https://doi.org/10.1021/acsmaterialslett.4c00531

Hahn H., Klingler W. Über die Kristallstrukturen von Ga2S3, Ga2Se3 und Ga2Te3. Zeitschrift für anorganische Chemie. 1949;259(1-4): 110–119. https://doi.org/10.1002/zaac.19492590111

Pardo M. P., Tomas A., Guittard M. Polymorphisme de Ga2S3 et diagramme de phase Ga-S. Materials Research Bulletin. 1987;22: 1677–1684. https://doi.org/10.1016/0025-5408(87)90011-0

Greenberg J. Thermodynamic basis of crystal growth: P-T-X phase equilibrium and nonstoichiometry. Springer-Vcrlag Berlin Heidelberg, Berlin; 2002. 247 p. https://doi.org/10.1007/978-3-662-04876-4

Zlomanov V. P., Novoselova A. V. P-T-x-state diagrams of metal-chalcogen systems*. V. B. Lazarev (ed.). oscow:

Nauka Publ.; 1987. 187 p. (In Russ.). Available at: https://f.eruditor.link/file/1843241/

Ider M., Pankajavalli R., Zhuang W., Shen J. Y., Anderson T. J. Thermochemistry of the Ga-Se system. ECS Journal of Solid State Science and Technology. 2015;4(5): Q51–Q60. https://doi.org/10.1149/2.0011507jss

Rustamov P. G., Mardakhaev B. I., Safarov M. G. Study of the phase diagram of the gallium-sulphur system. Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy. 1967;3(3): 479–484. (In Russ.)

Massalski T. Binary alloy phase diagrams. Materials Information Soc. 2-nd Ed., Volume. 2. Materials Park, Ohio; 1990. 1269 p.

Predel B., Ed.: O. Madelung. Ga-S (Gallium-Sulfur) System. In: Phase equilibria, crystallographic and thermodynamic data of binary alloys. Berlin: Springer; 1996;2(1-2): 2. https://doi.org/10.1007/10501684_1396

Spandau H., Klanberg F. Thermische Untersuchungen an Sulfiden. II. Das thermische Verhalten der Sulfide des Galliums. Zeitschrift für anorganische und allgemeine Chemie. 1958;295(5-6): 300–308. https://doi.org/10.1002/zaac.19582950504

Berezin S. S., Zavrazhnov A. Y., Naumov A. V., Nekrylov I. N., Brezhnev N. Y. The phase diagram of the Ga–S system in the concentration range from 48.0 to 60.7 mol % S. Condensed Matter and Interphases. 2017;19(3): 321–335. (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2017.19/208

Zavrazhnov A., Berezin S., Kosykov A., Naumov A., Berezina M., Brezhnev N. The phase diagram of the Ga–S system in the concentration range of 48.0–60.7 mol % S. Journal of Thermal Analysis and Calorimetry. 2018;134: 483–492. https://doi.org/10.1007/s10973-018-7124-z

Volkov V. V., Sidey V. I., Naumov A. V., Nekrylov I. N., Brezhnev N. Y., Malygina E. N., Zavrazhnov A. Y. The cubic high-temperture modification of gallium sulphide (xs = 59 mol %) and the T, x-diagram of the Ga – S system. Condensed Matter and Interphases. 2019;21(1): 37–50. (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2019.21/715

Volkov V. V., Sidey V. I., Naumov A. V., … Zavrazhnov A. Yu. Structural identification and stabilization of the new high-temperature phases in A(III) – B(VI) systems (A = Ga, In, B = S, Se). Part 1: high-temperature phases in the a – S system. Journal of Alloys and Compounds. 2022;899: 163264. https://doi.org/10.1016/j.jallcom.2021.163264

Brezhnev N. Yu. Ga-S and In-Se systems: crystal structure of intermediate phases and T-x-diagrams*. Cand. chem. sci. diss. Voronezh; 2023. 28 p. (In Russ.). Available at: https://rusneb.ru/catalog/000199_000009_012131968/

Brezhnev N. Y., Dorokhin M. V., Zavrazhnov A. Y., Kolyshkin N. A., Nekrylov I. N., Trushin V. N. ightemperature gallium sesquisulfides and a fragment of the T-x diagram of the Ga – S system with these phases. Condensed Matter and Interphases. 2024;26(2): 225–237. https://doi.org/10.17308/kcmf.2024.26/11936

Pardo M., Guittard M., Chilouet A., Tomas A. Diagramme de phases gallium-soufre et études structurales des phases solides. Journal of Solid State Chemistry. 1993;102: 423–433. https://doi.org/10.1006/jssc.1993.1054

Berezin S. S., Berezina M. V., Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Sidei V. I. Phase transformations of indium mono- and sesquisulfides studied by a novel static thermal analysis technique. Inorganic Materials. 2013;49(6): 555–563. https://doi.org/10.1134/s0020168513060010

Zavrazhnov A. Yu., Nekrylov N. I., Berezina S. S., Zhuravlev I. A. Phases of the gallium sesquisulfide family stabilised by iron and manganese impurities. In: Thermodynamics and Materials Science: Proc. XV Symposium with International Participation, 3–7 July 2023. Novosibirsk: Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences; 2023. p. 35. https://doi.org/10.26902/THERM_2023_015

Zavrazhnov A. Yu., Nekrylov I. N., Berezin S. S., Brezhnev, N. Y. Zavaluev V. Y., Kosyakov A .V. Phase diagrams for the Ga – S and Mn – Ga – S systems. XXIV International Conference on Chemical Thermodynamics in Russia (RCCT-2024), July 1-5, Ivanovo. Ivanovo State University of Chemistry and Technology: 2024: 125. ISBN 978-5-6051371-2-2. Available at: https://rcct.isc-ras.ru/sites/default/files/collectionabstracts/56/rcct-2024.pdf

Kokh K. A., Huang Z. M., Huang J. G., Gao Y. Q., … Andreev Yu. M. Study of Ga2S3 crystals grown from melt and PbCl2 flux. Materials Research Bulletin. 2016;84: 462–467. https://doi.org/10.1016/j.materresbull.2016.08.046

Tyurina E. A., Velmuzhov A. P. Sukhanov M. V., ... Shiryaev V. S. Phase formation during crystallization of melts and glasses of the GaxGe40-xS60 system. Journal of Non-Crystalline Solids. 2023;622: 122686. https://doi.org/10.1016/j.jnoncrysol.2023.122686

Vel’muzhov A. P., Sukhanov M. V., Potapov A. M., Suchkov A. I., Churbanov M. F. Preparation of extrapure Ga2S3 by reacting GaI3 with sulfur. Inorganic Materials. 2014; 50(7): 656–660. https://doi.org/10.1134/s0020168514070152

Lee J., Won Y. H., Kim H. N. Photoluminescence of Ga2S3 and Ga2S3:Mn single crystals. Solid State сommunications. 1996;97(12): 1101–1104. https://doi.org/10.1016/0038-1098(95)00728-8

Kokh K., Lapin I. N., Svetlichnyi V., Galiyeva P., Bakhadur A., Andreev Y. Synthesis and bridgman growth of Ga2S3 crystals. Key Engineering Materials. 2016;683: 71–76. https://doi.org/10.4028/www.scientific.net/KEM.683.71

Kosyakov A. V., Nekrylov I. N., Brezhnev N. Y., Malygina E. N., Zavrazhnov A. Y. The T-x diagram of the Ga – Se system in the composition range from 48.0 to 61.5 mol % Se according to thermal analysis data. Condensed Matter and Interphases. 2019;21(4): 519–527. https://doi.org/10.17308/kcmf.2019.21/2363

Okamoto H. Ga-Se (Gallium-Selenium). Journal of Phase Equilibria and Diffusion. 2009;30: 659. https://doi.org/10.1007/s11669-009-9601-3

Zavrazhnov A. Yu., Naumov A. V., Kosyakov A. V., Ryazhskikh M. V. Ancillary component method: using in the research and synthesis of pure inorganic compounds. Materials Science and Engineering B. 2011:1(12): 906–912. 44. Zavrazhnov A.Yu., Naumov A. V., Pervov V. S., Riazhskikh M. V. Chemical vapor transport for the control of сomposition of low-volatile solids: II. The composition control of indium sulfides: Technique of the charge dilution Thermochimica Acta. 2012;532: 96–102. https://doi.org/10.1016/j.tca.2010.10.004

Zavrazhnov A. Yu., Naumov A. V., Turchen D. N., Zartsyn I. D., Zlomanov V. P. Chemical transport for controlling the composition of condensed bodies II. Control of the composition of gallium monoselenide within the homogeneityregion and diagnostics of GaSe nonstoichiometry. Condensed Matter and Interphases. 2004;6 (4): 322–335. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=29833369

Zavrazhnov A. Yu., Zartsyn I. D., Naumov A. V., Zlomanov V. P., Davydov A. V. Composition control of

owvolatility solids through chemical vapor transport reactions. I. Theory of selective chemical vapor transport. Journal of Phase Equilibria and Diffusion. 2007;28: 510–516. https://doi.org/10.1007/s11669-007-9200-0

Kosyakov A.V., Zavrazhnov A. Y., Naumov A. V. Refinementof the In-S phase diagramusing spectrophotometric

сharacterization of equilibria between hydrogen and indium sulfides. Inorganic Materials. 2010;46(4): 398-401. 343–345. https://doi.org/10.1134/s0020168510040035

Kosyakov A. V., Zavrazhnov A. Yu., Naumov A. V., Sergeeva A. S. Specification of the phase diagram of system In - S according to spectrophotometric researches ofbalance between sulfides of indium and hydrogen. roceedings of the Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2009;2: 28–39. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.as-p?id=12992199

Zavrazhnov A. Yu., Naumov A. V., Anorov P. V., Goncharov E. G., Sidey V. I., Pervov V. S. T-x phase diagram of the In-S system. Inorganic Materials. 2006;42(12): 1294–1298. https://doi.org/10.1134/s0020168506120028

Okamoto H. In-S (Indium-Sulfur). Journal of Phase Equilibria and Diffusion. 2012;34(2): 149–150. https://doi.org/10.1007/s11669-012-0152-7

Zavrazhnov A., Kosyakov A., Naumov A., Sergeeva A., Riazhskikh M., Berezin S. Study of the In–S phase iagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Thermochimica cta. 2013; 566: 169–174. https://doi.org/10.1016/j.tca.2013.05.031

Naumov A. V., Sergeeva A. V., Semenov V. N. Oriented In3–xS4 films on the (100) surface of Si, GaAs, and InP single crystals. Inorganic Materials. 2017;53(6): 560–567. https://doi.org/10.1134/S0020168517060127

Zavrazhnov A. Yu., Naumov A. V., Sergeeva A. V., Sidey V. I. Selective chemical vapor transport as a means of varying the composition of nonstoichiometric indium sulfides. Inorganic Materials. 2007;43(11): 1167–1178. https://doi.org/10.1134/s0020168507110039

Zavrazhnov A. , Naumov A. , Kosyakov A. , Riazhskikh M. Ancillary component method: using in the research and synthesis of pure inorganic compounds. Materials Science and Engineering B. 2011;1: 906–912. Available at: https://www.researchgate.net/publication/247931076_Ancillary_Component_Method_Using_in_the_Research_and_Synthesis_of_Pure_Inorganic_Compounds

Brezhnev N. Yu., Zavrazhnov A. Yu., Naumov A. V., Kosyakov A. V., Zavalyuev V. Yu. Refinement of the T-x diagram of the state of the In-Se system, as well as the structure of intermediate phases of this system. In: Thermodynamics and Materials Science: Proc. XV Symposium with International Participation, 3–7 July 2023. Novosibirsk: Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of ciences; 2023. p. 74. https://doi.org/10.26902/THERM_2023_054

Okamoto H. In-Se (Indium-Selenium). Journal of Phase Equilibria and Diffusion. 2004;25: 201. https://doi.org/10.1007/s11669-004-0031-y

Liu L., Dong J., Huang J, … Liu Z. Atomically resolving polymorphs and crystal structures of In2Se3. Chemistry of Materials. 2019; 31: 10143−10149 https://doi.org/10.1021/acs.chemmater.9b03499

Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Berezina S. S., Chernenko K. K. High-temperature in situ vapor spectrophotometry as a static variant of the tensimetric method equilibria in the Ga – I system. Condensed Matter and Interphases. 2015;17(4): 417–436. Available at: https://journals.vsu.ru/kcmf/article/view/87

Zavrazhnov A. Y., Naumov A. V., Malygina E. N., Kosyakov A. V. Indium monochloride vapor pressure: the vapor-gauge and spectrophotometric experimaental data. Condensed Matter and Interphases. 2019;21(1): 60–61. https://doi.org/10.17308/kcmf.2019.21/717

Brezhnev N. Y., Kosyakov A. V., Steich A. V., Zavrazhnov A. Y. High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system. Condensed Matter and Interphases. 2021;23(4): 482–495. https://doi.org/10.17308/kcmf.2021.23/3667

Walther R., Deiseroth J. Redetermination of the crystal structure of hexaindium heptaselenide, In6Se7. Zeitschrift für Kristallographie – Crystalline Materials. 1995; 210: 359–365. https://doi.org/10.1524/zkri.1995.210.5.359

Gödecke T., Haalboom T., Sommer F. Stable and metastable phase equilibria of the In-Se system. Journal of Phase Equilibria. 1998;19(6): 572–576. https://doi.org/10.1007/BF02701021

Vassilev G. P. Infrared spectroscopy and X-ray diffraction data of In–Se compounds. Int. International Journal of Materials Research. 2007;98(1): 60–63 https://doi.org/10.3139/146.101428

Peng Y.-H., Muhimmah L. C., Ho C.-H. Phosphorusdoped multilayer In6Se7: the study of structural, electrical, and optical properties for junction device. JACS Au. 2023;4(1): 58–71. https://doi.org/10.1021/jacsau.3c00653

Опубликован
2024-12-04
Как цитировать
Завражнов, А. Ю., Брежнев, Н. Ю., Некрылов, И. Н., & Косяков, А. В. (2024). Фазы со слоистыми (AB) и «дефектными» (A2B3) структурами в системах AIII– BVI. Часть 2. Фазовые диаграммы и подходы к некоторым задачам воспроизводимого синтеза в системах AIII–BVI. Обзор. Конденсированные среды и межфазные границы, 27(1), 29-47. https://doi.org/10.17308/kcmf.2025.27/12484
Раздел
Обзор

Наиболее читаемые статьи этого автора (авторов)