Phases with layered (AB) and “defective” (A2B3) structures in AIII–BVI systems Part 1. Structural uniqueness and properties of bulk samples and films. Review
Abstract
The review analyses and, where possible, reconciles data on two large groups of inorganic substances that are very unusual in terms of structure and properties, designated as AIIIBVI compounds. The structures and properties of typical compounds of these systems: A1IIIB1VI and A2IIIB3VI were considered. The relationship between the structure and the nature of the chemical bond and the organization of stoichiometric vacancies in crystal lattices is described in detail. The genesis of structures was analyzed for various modifications of A2IIIB3VI sesqui-chalcogenides. The transformations of these compounds into each other were also considered in relation with the ordering/disordering processes of stoichiometric vacancies. The possibilities of forming nanolayer structures, tubulenes, and intercalates were demonstrated for A1IIIB1VI layered compounds. The prospects for the application of both nanolayer coatings and bulk single crystals of A1IIIB1VI and A2IIIB3VI phases were analyzed. The presented review is based on the analysis of both literary data and the results of the studies of the authors and some other researchers of Voronezh State University
Downloads
References
Olmstead M. A., Ohuchi F. S. Group III selenides: controlling dimensionality, structure, and properties using through defects and heteroepitaxial growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 2021;A39: 020801. https://doi.org/10.1116/6.0000598
Goryunova N. A. Complex diamond-like semiconductors*. Moscow: Sovetskoe Radio Publ.; 1968. 268 p. (In Russ.)
Parthé E. Elements of inorganic structural chemistry. CH-1213: Petit-Lancy, Switzerland; 1996. 230 p.
Ormont B. F. Introduction to physical chemistry and crystal chemistry of semiconductors*: Textbook. V. M. Glazov (ed.). 3rd ed., corrected and enlarged. Moscow: Vysshaya Shkola Publ.; 1982. 528 p. (In Russ.)
Goryunova N. A. Some issues of crystal chemistry of compounds with zinc blende structure*. Izvestiya Akademii nauk SSSR. Fizika. 1957 21(1): 120. (In Russ.)
Atroschenko L. V., Zhuze V. P., Koshkin V. M., Ovechkina E. E., Palatnik L. S. The property of chemical inertness of metal impurities in semiconductors with stoichiometric vacancies*. Byulleten’ izobretenii i otkrytii SSSR. 1981;41: 1. (In Russ.)
Palatnik L. S., Komnik Yu. F., Koshkin V. M. Crystal chemistry of compounds with tetrahedral coordination of atoms*. Kristallografiya. 1952;7(4):563–567. (In Russ.)
Koshkin V. M., Volovichev I. N., Gurevich Yu. G., Galchinetsky L. P., Rarenko I. M. Materials and devices with a giant radiation resource*. Materials of scintillation technology: Institute of Single Crystals. 2006: 5–60. (In Russ.)
Palatnik L. S., Rogacheva E. I. Equilibrium diagrams and structure of some semiconductor alloys A2ICVI–B2IIIC3VI* Soviet Physics Doklady. 1967;174(1): 80. (In Russ.)
Palatnik L. S., Koshkin V. M., Komnik Yu. F. Chemical bonding in semiconductors and solids*. Moscow: Nauka i Tekhnika Publ.; 1965. 301 p. (In Russ.)
Atroshchenko L. V., Galchinetsky L. V., Koshkin V. M., Palatnik L. S. Deviations from stoichiometry and solubility of impurities in semiconductors with stoichiometric vacancies. Chemical bonding in semiconductors and thermodynamics*. Minsk: Nauka i Tekhnika Publ.; 1966. 261 p. (In Russ.)
Hahn H., Klingler W. Über die Kristallstrukturen von Ga2S3, Ga2Se3 und Ga2Te3. Z. Zeitschrift für anorganische Chemie. 1949;259(1-4): 110–119. https://doi.org/10.1002/zaac.19492590111
Suchet J. P. Chimie physique des semiconducteurs. Dunod, France. 1962. 361 p.
Madelung O. III2–VI3 compounds. Semiconductors Data Handbook. Springer, Berlin. 2004:275–288. https://doi.org/10.1007/978-3-642-18865-7
Yitamben E. N., Lovejoy T. C., Pakhomov A. B., Heald S. M., Negusse E. Correlation between morphology, chemical environment, and ferromagnetism in the intrinsic-vacancy dilute magnetic semiconductor Cr-doped Ga2Se3/Si(001). Physical Review B. 2011;83: 045203. https://doi.org/10.1103/PhysRevB.83.045203
Peng H., Zhang X. F., Twesten R. D., Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research. 2009;2: 327-335. https://doi.org/10.1007/s12274-009-9030-y
Zhao P., Ma Y., Lv X., Li M., Huang B. Two-dimensional III2-VI3 materials: promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy. 2018;51: 533. https://doi.org/10.1016/j.nanoen.2018.07.010
Krost A., Richter W., Zahn D. R. T. Chemical reaction at the ZnSe/GaAs interface detected by Raman spectroscopy. Applied Physics Letters. 1990;57: 1981. https://doi.org/10.1063/1.104149
Wright A. C., Williams J. O. Detection of compound formation at the ZnSe/GaAs interface using high resolution transmission electron microscopy (HRTEM). Journal of Crystal Growth. 1991;99: 114. https://doi.org/10.1016/0022-0248(91)90684-W
Takatani S., Nakano A., Ogata K., Kikawa T. Structure of chalcogen-stabilized GaAs interface. MRS Proceedings. 1992;31: L458. https://doi.org/10.1557/PROC-281-677
Guler I., Isik M., Gasanly N. M., Gasanova L. G. Structural and optical properties of Ga2Se3 crystals by spectroscopic ellipsometry. Journal of Electronic Materials. 2019;48: 2418. https://doi.org/10.1007/s11664-019-07000-4
Morley S., Emde M., Zahn D. R. T., … Poole I. B. Optical spectroscopy of epitaxial Ga2Se3 layers from the far infrared to the ultraviolet. Journal of Applied Physics. 1996;79: 3196–3199. https://doi.org/10.1063/1.361264
El-Rahman K. F. Charge conduction mechanisms and photovoltaic properties of n-(Ga2S3 – Ga2Se3)/p-Si heterojunctions. The European Physical Journal Applied Physics. 2007;37(2): 143–147. https://doi.org/10.1051/epjap:2007004
Kuzubov S. V., Kotov G. I., Synorov, Yu. V. Gallium vacancy ordering in Ga2Se3 thin layers on Si(100), Si(111), and Si(123) substrates. Crystallography Reports. 2017;62(5): 768–772. https://doi.org/10.1134/s1063774517050121
Budanov A. V., Vlasov Y. N., Kotov G. I., Rudnev E. V., Mikhailyuk E. A. Deep levels in Ga2Se3/GaP (111) heterostructures. Chalcogenide Letters. 2018;15(8): 425–428. Available at: https://chalcogen.ro/425_BudanovAV.pdf
Budanov A. V., Vlasov Yu. N., Kotov G. I., Burtsev A. A., Rudnev E. V. Photosensitivity of In2Se3/InAs heterostructures*. In: Actual problems in micro- and nanoelectronics. Interuniversity collection of scientific papers: Voronezh-2022. 2022: 24–30. (In Russ.). Available at: https://catalog.inforeg.ru/Inet/GetEzineByID/33862
Bezryadin N. N., Kotov G. I., Kubuzov S. V., Vlasov Yu. N. Surface phase of Ga2Se3 on GaP (111). Condensed Matter and Interfaces. 2013;15: (4): 382–386. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=20931229
Pardo M., Tomas A., Guittard M. Polymorphisme de Ga2S3 et diagramme de phase Ga – S. Materials Research Bulletin. 1987;22(12): 1677–1684. https://doi.org/10.1016/0025-5408(87)90011-0
Pardo M., Guittard M., Chilouet A., Tomas A. Diagramme de phases gallium – soufre et etudes structurales des phases solides. Journal of Solid State Chemistry. 1993;102(2): 423–433. https://doi.org/10.1006/jssc.1993.1054
Volkov V. V., Sidey V. I., Naumov A. V., ... Zavrazhnov A. Yu. Structural identification and stabilization of the new high-temperature phases in A(III) – B(VI) systems (A = Ga, In, B = S, Se). Part 1: High-temperature phases in the Ga – S system. Journal of Alloys and Compounds. 2022;899: 163264. https://doi.org/10.1016/j.jallcom.2021.163264
Ho C. H. Ga2Se3 defect semiconductors: the study of direct band edge and optical properties. ACS Omega. 2020;29(5): 18527–18534. https://doi.org/10.1021/acsomega.0c02623
Shi C., Yang B., Hu B., Du1 Y., Yao S. Thermodynamic description of the Al–X (X = S, Se, Te) systems. Journal of Phase Equilibria and Diffusion. 2019;40: 392–402. https://doi.org/10.1007/s11669-019-00733-z
Chen G., Drennan Z. G., Zou J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small. 2014;14(10): 2747–2765. https://doi.org/10.1002/smll.201400104
Brezhnev N. Y., Dorokhin M. V., Zavrazhnov A. Y., Kolyshkin N. A., Nekrylov I. N., Trushin V. N. High-temperature gallium sesquisulfides and a fragment of the T-x diagram of the Ga – S system with these phases. Condensed Matter and Interphases. 2024;26(2):225–237. https://doi.org/10.17308/kcmf.2024.26/11936
Likforman A., Fourcroy P.-H., Guittard M., Flahaut J., Poirier R., Szydlo N. Transitions de la forme de haute température a de In2Se3, de part et d’autre de la température ambiante. Journal of Solid State Chemistry. 1980;33(1): 91–97. https://doi.org/10.1016/0022-4596(80)90551-4
Davydov S. Yu., Kobyakov I. B. Dependence of elastic constants of zinc sulfide on the phase composition of wurtzite/sphalerite*. Soviet Physics: Thechnical Physics. 1983;53(2): 377–379. (In Russ.). Available at: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid= jtf&paperid=2201&option_lang=rus
Brezhnev N. Yu. Ga-S and In-Se systems: crystal structure of intermediate phases and T-x diagrams*. Cand. chem. sci. diss. Voronezh, 2023. 189 p. Available at: https://rusneb.ru/catalog/000199_000009_012131968/
Lutz D, Fischer M., Baldus H.-P., Blachnik R. Zur polymorphie des In2Se3. Journal of the Less Common Metals. 1988;143: 83–92. https://doi.org/10.1016/0022-5088(88)90033-1
Pfitzner A., Lutz H. D. Redetermination of the crystal structure of g-In2Se3 by twin crystal X-ray method. Journal of Solid State Chemistry. 1996;124: 305–308. https://doi.org/10.1006/jssc.1996.0241
Manolikas C. New results on the phase transformations of In2Se3. Journal of Solid State Chemistry. 1988;74: 319–328. https://doi.org/10.1016/0022-4596(88)90361-1
Landuyt J., Tendeloo G., Amelinckx S. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Physica Status Solidi (a). 1975;30: 299–302. https://doi.org/10.1002/pssa.2210300131
Ye J., Yoshida T, Nakamura Y.; Nittono O. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Applied Physics Letters. 1995;67(21): 3066–3068. https://doi.org/10.1063/1.114866
Kojima N., Morales C., Ohshita T., Yamaguchi M. Ga2Se3 and (InGa)2Se3 as novel buffer layers in the GaAs on Si system. AIP Conference Proceedings. 2013;1556(1): 38–40. https://doi.org/10.1063/1.4822194
Küpers M., Konze P. M., Meledin A., … Dronskowski R. Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of a-In2Se3. Inorganic Chemistry. 2018;57(18): 11775–11781. https://doi.org/10.1021/acs.inorgchem.8b01950
Popovic S., Celustka B., Bidjin D. X-ray diffraction measurement of lattice parameters of In2Se3. Physica Status Solidi (a). 1971;6(1): 301–304. https://doi.org/10.1002/pssa.2210060134
Likforman A., Guittard M., Tomas A., Mise en evidence d’une solution de type spinelle dans le diagramme de phase du systeme In – S. Journal of Solid State Chemistry. 1980;34(3): 353–359. https://doi.org/10.1016/0022-4596(80)90434-X
Kosyakov A. V., Zavrazhnov A. Yu., Naumov A. V. Refinement of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Inorganic Materials. 2010;46(4): 343–345. https://doi.org/10.1134/s0020168510040035
Kosyakov A. V., Zavrazhnov A. Y., Naumov A. V., Sergeyeva A. V. Specification of the phase diagram of system In - S according to spectrophotometric researches of balance between sulfide of indium and hydrogen. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy”. Series: Chemistry. Biology. Pharmacy. 2009;2: 28–39. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=12992199
Zavrazhnov A. Y., Naumov A. V., Anorov P. V., … Pervov V. S. T-x phase diagram of the In-S system. Inorganic Materials. 2006:42: 1294–1298. https://doi.org/10.1134/S0020168506120028
Naumov A. V., Sergeeva A. V., Semenov V. N. Structure and reflection spectra of In3‑xS4(111)/mono-Si and In3–xS4(111)/SiO2/mono-Si films. Inorganic Materials. 2015;51(12): 1205–1212. https://doi.org/10.1134/S0020168515110060
Naumov A. V., Sergeeva A. V., Semenov V. N. Oriented In3–xS4 films on the (100) surface of Si, GaAs, and InP single crystals. Inorganic Materials. 2017;53(6): 560–567. https://doi.org/10.1134/S0020168517060127
Pistor P., Alvarez J. M., Leon M., di Michiel M. Structure reinvestigation of a-, b- and g-In2S3. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 2016;72(3): 410–415. https://doi.org/10.1107/S2052520616007058
Bartzokas D., Manolikas C. Spyridelis J. Electron microscopic study of the destabilization of stabilized g-phase of indium sesquisulphide. Physica Status Solidi (a). 1978;47(2): 459–467. https://doi.org/10.1002/pssa.2210470216
Diehl R., Carpentier C. D., Nitsche R. The crystal structure of g-In2S3 stabilized by As or Sb. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1976;32(4): 1257–1260. https://doi.org/10.1107/s0567740876005062
Liu K., Dai L., Li H., Hu H, … Hong M. Evidences for phase transition and metallization in b−In2S3 at high pressure. Chemical Physics. 2019;524: 63–69. https://doi.org/10.1016/j.chemphys.2019.04.025
Jebasty R. M., Sjastad A. O., Vidya R. Prediction of intermediate band in Ti/V doped g‑In2S3. RSC Advances. 2022;12(3): 1331–1340. https://doi.org/10.1039/d0ra08132a
Berezin S. S., Berezina M. V., Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Sidei V. I. Phase transformations of indium mono- and sesquisulfides studied by a novel static thermal analysis technique. Inorganic Materials. 2013;49(6): 555–563. https://doi.org/10.1134/S0020168513060010
Zavrazhnov A. Y., Kosyakov A. V., Naumov A. V., Sergeeva A. V., Berezin S. S. Study of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Thermochimica Acta. 2013;566(20): 169–174. https://doi.org/10.1016/j.tca.2013.05.031
Depeursinge Y., Electronic properties of the layer III–VI semiconductors. A comparative study. Il Nuovo Cimento B Series 11. 1981;64: 111–150. https://doi.org/10.1007/BF02721299
Jie W., Hao J. Two-dimensional layered gallium selenide: preparation, properties and applications. In: Advanced 2D Materials. Tiwari A., Syväjärvi M. (eds.). New York: Wiley; 2016: 1–36. 514 p. https://doi.org/10.1002/9781119242635.ch1
Schluter M., Camassel J., Kohn S., … Cohen M. L. Optical properties of GaSe and GaSxSe1−x mixed crystals. Physical Review B. 1976;13(8): 3534–3547. https://doi.org/10.1103/PhysRevB.13.3534
Liu F., Shimotani H., Shang H., … Drummond N. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano. 2014;8(1): 752–760. https://doi.org/10.1021/nn4054039
Edwards D. F. Gallium telluride (GaTe). In: Handbook of Optical Constants of Solids. Palik E. D. (ed.). Amsterdam: Elsevier; 1997. p. 489–505. https://doi.org/10.1016/b978-012544415-6/50114-x
Grygorchak I., Voitovych S., Stasyuk I., Velychko O., Menchyshyn O. Electret effect in intercalated crystals of the AIIIBVI group. Condensed Matter Physics. 2007;10(1): 51–60. https://doi.org/10.5488/CMP.10.1.51
Rajapakse M., Karki B., Abu U. O., …Yu M. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Materials and Applications. 2021;5: Article-30. https://doi.org/10.1038/s41699-021-00211-6
Nekrasov O. V., Zavrazhnov A. Yu., Semenov, V. N. Dolgopolova E. A., Averbakh E. M. Incorporation of HNO3 into GaSe and InSe*. Inorganic Materials 1994;30(6): 737–740. (In Russ.). Available at: https://elibrary.ru/item.asp?id=28934301
Zavrazhnov A. Yu., Turchen D. N., Semenov V. N. Zlomanov V. P, Pervov V. S. Oxidizing intercalation of layered structures. Materials Technology. 2000;15(2): 155–160. https://doi.org/10.1080/10667857.2000.11752872
Zavrazhnov A. Yu., Nekrasov O. V., Averbakh E. M. Falkengof A. T. On the possibility of insertion of some organic molecules into GaSe and InSe*. Inorganic Materials. 1994;30(6): 1030–1032. (In Russ.). Available at: https://elibrary.ru/item.asp?id=29831583
Vela Y. G., Juan D., Dicorato S., Losurdo M. Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films. Optics Express, 2022;30: 15. https://doi.org/10.1364/OE.459815
Zavrazhnov A. Yu., Turchen D. N. Oxidative insertion into GaSe-type structures*. Condensed Matter and Interphase. 1999;1(2): 190–196. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=24120596
Motter J. P., Koski K. J. Cui Y. General strategy for zero-valent intercalation into two-dimensional layered nanomaterials. Chemistry of Materials. 2014;26: 2313–2317. https://doi.org/10.1021/cm500242h
Turchen D. N., Zavrazhnov A. Yu., Goncharov E. G., Suvorov A.V . Nonstoichiometry research for the low-volatilaty phases. Homogeneity region of GaSe*. Russian Journal of General Chemistry. 1998;68(6): 920–925. (In Russ.). Available at: https://elibrary.ru/ynceoh
Turchen D. N., Zavrazhnov A. Yu., Prigorodova T. V. Scanning of T-x-projections of phase microdiagrams based on the gas solubility in melts*. Russian Journal of General Chemistry. 1999;69(5): 1–8. (In Russ.).
Ikram R., Jan B. M., Ahmad W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology. 2020;9(5): 11587–11610. https://doi.org/10.1016/j.jmrt.2020.08.050
Julien C., Nazri G. A. Intercalation compounds for advanced lithium batteries. Chapter 3. In: Handbook of Advanced Electronic and Photonic Materials and Devices. H. S. Nalwa (ed.). USA. Academic Press; 2001;10: 99–181. https://doi.org/10.1016/b978-012513745-4/50083-4
Ng B., Wong C., Niu W., … Tsang S. Molecular layer-by-layer re-stacking of MoS2–In2Se3 by electrostatic means: assembly of a new layered photocatalyst. Materials Chemistry Frontiers. 2023;7(5): 937–945. https://doi.org/10.1039/D2QM01095J
Karpov V. V., Bandura A. V., Evarestov R. A. Nonempirical calculations of the structure and stability of nanotubes based on gallium monochalcogenides. Physics of the Solid State. 2020;62(6): 1017–1023. https://doi.org/10.1134/S1063783420060116
Xu K., Yin L., Huang Y. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale. 2016;8(38): 16802-16818. https://doi.org/10.1039/C6NR05976G
Abd-Elkader O. H., Abdelsalam H., Sakr M. A., Teleb N. H., Zhang Q. Electronic and optical properties of finite gallium sulfide nano ribbons: a first-principles study. Crystals. 2023;1215: 13. https://doi.org/10.3390/cryst13081215
Ren D., Merdrignac-Conanec O., Dorcet V., ... Zhang X. In situ synthesis and improved photoelectric performances of a Sb2Se3/b-In2Se3 heterojunction composite with potential photocatalytic activity for methyl orange degradation. Ceramics International. 2020;46(16): 25503–25511. https://doi.org/10.1016/j.ceramint.2020.07.021
Ambrosi A., Pumera A. Exfoliation of layered materials using electrochemistry. Chemical Society Reviews. 2018;47: 7213–7224. https://doi.org/10.1039/c7cs00811b
Wang T., Wang J., Wu J., Ma P., Su R., Zhou P. Near-infrared optical modulation for ultrashort pulse generation employing indium monosulfide (InS) two-dimensional semiconductor nanocrystals. Nanomaterials. 2019;9: 865. https://doi.org/10.3390/nano9060865
Shao M., Bie T., Yang L., … He L. Over 21% efficiency stable 2D perovskite solar cells Advanced Materials. 2022;34: 2107211. https://doi.org/10.1002/adma.202107211
Harvey A., Backes C., Gholamvand Z., Hanlon D., McAteer D. Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts. Chemistry of Materials. 2015;27: 3483–3493. https://doi.org/10.1021/acs.chemmater.5b00910
Zhang C., Park S. H., Ronan O. ... Nicolosi V. Enabling flexible heterostructures for Li-ion battery an-odes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small, 2017;13(34): 1701677. https://doi.org/10.1002/smll.2017016
Ahmed S., Cheng P.K., Qiao J. Nonlinear optical activities in two-dimensional gallium sulfide: a comprehensive study. ACS Nano. 2022;16(8): 12390–12402 https://doi.org/10.1021/acsnano.2c03566
Zappia M. I., Bianca G., Bellani S., Curreli N. Two-dimensional gallium sulfide nanoflakes for UV-selective photoelectrochemical-type photodetectors. The Journal of Physical Chemistry C. 2021;125(22):11857–11866. https://doi.org/10.1021/acs.jpcc.1c03597
Opoku F., Akoto O., Asare-Donkor N. K., Adimado A. A. Defect-engineered two-dimensional layered gallium sulphide molecular gas sensors with ultrahigh selectivity and sensitivity. Applied Surface Science. 2021;562: 150188. https://doi.org/10.1016/j.apsusc.2021.150188
Lu Y., Warner J. H. Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths. ACS Applied Electronic Materials. 2020;7(2): 1777–1814. https://doi.org/10.1021/acsaelm.0c00105
Côté M., Cohen M. L., Chadi J. D. GaSe nanotubes. Physical Review B. 1998;58: R4277. https://doi.org/10.1103/PhysRevB.58.R4277
Seral-Ascaso A., Metel S., Pokle A. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes. Nanoscale. 2016;8: 11698–11706. https://doi.org/10.1039/C6NR01663D
Petroni E., Lago E., Bellani S. Liquid-phase exfoliated indium-selenide flakes and their application in hydrogen evolution reaction. Small. 2018;26(14): e1800749. https://doi.org/10.1002/smll.201800749
Shi G., Kioupakis E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Letters. 2015;15:6926. https://pubs.acs.org/doi/10.1021/acs.nanolett.5b02861
Wasala M., Sirikumara H. I., Raj Sapkota Y., … Talapatra S. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds. Journal of Materials Chemistry C. 2017;43(5): 11214–11225. https://pubs.acs.org/10.1039/c7tc02866k
Yüksek M., Elmali A., Karabulut M. Nonlinear absorption in undoped and Ge doped layered GaSe semiconductor crystals. Applied Physics B. 2010;98: 77–81. https://doi.org/10.1007/s00340-009-3665-y
Zhou X., Cheng J., Zhou Y., ... Yu D. Strong second-harmonic generation in atomic layered GaSe. American Chemical Society. 2015;137(25): 7994–7997. https://doi.org/10.1021/jacs.5b04305
Hu L., Huang X., Wei D. Layer-independent and layer-dependent nonlinear optical properties of two-dimensional GaX (X = S, Se, Te) nanosheets. Physical Chemistry Chemical Physics. 2017;19(18): 11131–11141. https://doi.org/10.1039/c7cp00578d
Gan X. T., Zhao C., Hu S. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light: Science and Applications. 2018;7: 17126. https://doi.org/10.1038/lsa.2017.126
Karatay A., Yuksek M., Ertap H., Elmali A., Karabulut M. Enhancing the blue shift of SHG signal in GaSe:B/Ce crystal. Optics and Laser Technology. 2018;99: 392–395. https://doi.org/10.1016/j.optlastec.2017.09.027
Yuan Q., Fang L., Fang H., ... Gan X. Second harmonic and sum-frequency generations from a silicon metasurface integrated with a two-dimensional material. ACS Photonics. 2019;6: 2252–2259. https://doi.org/10.1021/acsphotonics.9b00553
Fernelius N. Properties of gallium selenide single crystal. Progress in Crystal Growth and Characterization of Materials. 1994;28(4): 275–353. https://doi.org/10.1016/0960-8974(94)90010-8
Sarkisov S. Yu., Mikhailov T. A., Bereznaya S. A., Korotchenko Z. V., Redkin R. A. Nonlinear optical element based on a GaSe single crystal with a double-sided antireflection coating for generating terahertz radiation*. Patent RF: No. 193143U1. Publ. 15.10.2019, bull. No. 29. (In Russ.) Available at: https://patents.google.com/patent/RU193143U1/ru
Lubenko D. M., Ezhov D. M., Losev V. F., Andreev Yu. M., Lanskii G. V. IR-to-THz down conversion in nonlinear GaSe:Al crystals. Bulletin of the Russian Academy of Sciences: Physics. 2020;84(7): 780–782. https://doi.org/10.3103/s1062873820070163
Kul’chitskii N. A., Naumov A. V. Modern state of markets of selenium and selenium-based compounds. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Proceedings of Higher Schools. Nonferrous Metallurgy). 2015;3: 40–48. https://doi.org/10.17073/0021-3438-2015-3-40-48
Gershenzon E. G. Submillimeter spectroscopy*. Sorosovskij obrazovatel’nyj zhurnal. Serija Fizika. Physics Series. 1998;4: 78–85. (In Russ.). Avalable at: https://www.pereplet.ru/obrazovanie/stsoros/533.html
Song M., An N., Zou Y. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection. Frontiers of Physics. 2023;18: 52302. https://doi.org/10.1007/s11467-023-1277-3
Yan D., Xu D., Wang Y., Zhong K., Tunable J. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 µm laser and GaSe crystal. Laser Physics. 2018;28(12): 126205. https://doi.org/10.1088/1555-6611/aae060
Rao Z., Wang X., Lu Y. Tunable terahertz generation from one CO2 laser in a GaSe crystal. Optics Communications. 2011;23(284): 5472–5474. https://doi.org/10.1016/j.optcom.2011.08.009
Gamal G. A., Azad M. A. Photoelectric studies of gallium monosulfide single crystals. Journal of Physics and Chemistry of Solids. 2005;66(1): 5–10. https://doi.org/10.1016/j.jpcs.2004.06.011
Qasrawi A. F., Gasanly N. M. Carrier transport properties of InS single crystals. Crystal Research and Technology. 2002;37: 1104. https://doi.org/10.1002/1521-4079(200210)37:10<1104::AID-CRAT1104>3.0.CO;2-A
Ayddinli A., Gasanly N. M., Uka A. Anharmonicity in GaTe layered crystals. Crystal Research and Technology. 2002;37(12): 1303–1309. https://doi.org/10.1002/crat.200290006
Ahmad H., Azali N., Yusoff N. Layered gallium telluride for inducing mode-locked pulse laser in thulium/holmium-doped fiber. Luminescence, 2022;248: 119002. https://doi.org/10.1016/j.jlumin.2022.119002
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.