Фазы со слоистыми (AB) и «дефектными» (A2B3) структурами в системах AIII–BVI Часть 1. Структурное своеобразие и свойства объемных образцов и пленок. Обзор

  • Александр Юрьевич Завражнов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-0241-834X
  • Николай Юрьевич Брежнев ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I», ул. Мичурина, 1, Воронеж 394087, Российская Федерация https://orcid.org/0000-0002-3287-8614
  • Иван Николаевич Некрылов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-4491-4739
  • Андрей Викторович Косяков ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-9662-7091
  • Виктор Федорович Кострюков ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-5753-5653
Ключевые слова: халькогениды галлия, халькогениды индия, стехиометрические вакансии, полиморфизм, вакансионное упорядочение, эпитаксия, слоистая структура

Аннотация

В работе проанализированы и, по возможности, согласованы данные по двум большим группам очень необычных в плане строения и свойств неорганических веществ, обозначаемых, как соединения AIIIBVI. Рассмотрены структуры и свойства типичных соединений этих систем – A1IIIB1VI и A2IIIB3VI. Подробно описана взаимосвязь структуры с характером химической связи и организацией стехиометрических вакансий в кристаллических решетках. Для различных модификаций сесквихалькогенидов A2IIIB3VI анализируется генезис структур. Рассматриваются также их превращения друг в друга в связи с процессами упорядочения/разупорядочения стехиометрических вакансий. Для слоистых соединений A1IIIB1VI показываются возможности формирования нанослойных структур, тубуленов, а также
интеркалатов. Анализируются перспективы применения как нанослойных покрытий, так и объемных монокристаллов фаз A1IIIB1VI и A2IIIB3VI . Представляемый обзор основан на анализе как  литературных данных, так и результатов работ авторов этой статьи и некоторых других сотрудников Воронежского госуниверситета

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Александр Юрьевич Завражнов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., профессор кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Николай Юрьевич Брежнев, ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I», ул. Мичурина, 1, Воронеж 394087, Российская Федерация

мл. н. с. кафедры химии, Воронежский государственный аграрный университет
(Воронеж, Российская Федерация)

Иван Николаевич Некрылов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

ассистент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Андрей Викторович Косяков, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. х. н., доцент кафедры общей и неорганической химии, Воронежский государственный университет (Воронеж, Российская Федерация)

Виктор Федорович Кострюков, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. х. н., доцент, доцент кафедры материаловедения и индустрии наносистем, Воронежский государственный университет (Воронеж, Российская Федерация)

Литература

Olmstead M. A., Ohuchi F. S. Group III selenides: controlling dimensionality, structure, and properties using through defects and heteroepitaxial growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 2021;A39: 020801. https://doi.org/10.1116/6.0000598

Goryunova N. A. Complex diamond-like semiconductors*. Moscow: Sovetskoe Radio Publ.; 1968. 268 p. (In Russ.)

Parthé E. Elements of inorganic structural chemistry. CH-1213: Petit-Lancy, Switzerland; 1996. 230 p.

Ormont B. F. Introduction to physical chemistry and crystal chemistry of semiconductors*: Textbook. V. M. Glazov (ed.). 3rd ed., corrected and enlarged. Moscow: Vysshaya Shkola Publ.; 1982. 528 p. (In Russ.)

Goryunova N. A. Some issues of crystal chemistry of compounds with zinc blende structure*. Izvestiya Akademii nauk SSSR. Fizika. 1957 21(1): 120. (In Russ.)

Atroschenko L. V., Zhuze V. P., Koshkin V. M., Ovechkina E. E., Palatnik L. S. The property of chemical inertness of metal impurities in semiconductors with stoichiometric vacancies*. Byulleten’ izobretenii i otkrytii SSSR. 1981;41: 1. (In Russ.)

Palatnik L. S., Komnik Yu. F., Koshkin V. M. Crystal chemistry of compounds with tetrahedral coordination of atoms*. Kristallografiya. 1952;7(4):563–567. (In Russ.)

Koshkin V. M., Volovichev I. N., Gurevich Yu. G., Galchinetsky L. P., Rarenko I. M. Materials and devices with a giant radiation resource*. Materials of scintillation technology: Institute of Single Crystals. 2006: 5–60. (In Russ.)

Palatnik L. S., Rogacheva E. I. Equilibrium diagrams and structure of some semiconductor alloys A2ICVI–B2IIIC3VI* Soviet Physics Doklady. 1967;174(1): 80. (In Russ.)

Palatnik L. S., Koshkin V. M., Komnik Yu. F. Chemical bonding in semiconductors and solids*. Moscow: Nauka i Tekhnika Publ.; 1965. 301 p. (In Russ.)

Atroshchenko L. V., Galchinetsky L. V., Koshkin V. M., Palatnik L. S. Deviations from stoichiometry and solubility of impurities in semiconductors with stoichiometric vacancies. Chemical bonding in semiconductors and thermodynamics*. Minsk: Nauka i Tekhnika Publ.; 1966. 261 p. (In Russ.)

Hahn H., Klingler W. Über die Kristallstrukturen von Ga2S3, Ga2Se3 und Ga2Te3. Z. Zeitschrift für anorganische Chemie. 1949;259(1-4): 110–119. https://doi.org/10.1002/zaac.19492590111

Suchet J. P. Chimie physique des semiconducteurs. Dunod, France. 1962. 361 p.

Madelung O. III2–VI3 compounds. Semiconductors Data Handbook. Springer, Berlin. 2004:275–288. https://doi.org/10.1007/978-3-642-18865-7

Yitamben E. N., Lovejoy T. C., Pakhomov A. B., Heald S. M., Negusse E. Correlation between morphology, chemical environment, and ferromagnetism in the intrinsic-vacancy dilute magnetic semiconductor Cr-doped Ga2Se3/Si(001). Physical Review B. 2011;83: 045203. https://doi.org/10.1103/PhysRevB.83.045203

Peng H., Zhang X. F., Twesten R. D., Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research. 2009;2: 327-335. https://doi.org/10.1007/s12274-009-9030-y

Zhao P., Ma Y., Lv X., Li M., Huang B. Two-dimensional III2-VI3 materials: promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy. 2018;51: 533. https://doi.org/10.1016/j.nanoen.2018.07.010

Krost A., Richter W., Zahn D. R. T. Chemical reaction at the ZnSe/GaAs interface detected by Raman spectroscopy. Applied Physics Letters. 1990;57: 1981. https://doi.org/10.1063/1.104149

Wright A. C., Williams J. O. Detection of compound formation at the ZnSe/GaAs interface using high resolution transmission electron microscopy (HRTEM). Journal of Crystal Growth. 1991;99: 114. https://doi.org/10.1016/0022-0248(91)90684-W

Takatani S., Nakano A., Ogata K., Kikawa T. Structure of chalcogen-stabilized GaAs interface. MRS Proceedings. 1992;31: L458. https://doi.org/10.1557/PROC-281-677

Guler I., Isik M., Gasanly N. M., Gasanova L. G. Structural and optical properties of Ga2Se3 crystals by spectroscopic ellipsometry. Journal of Electronic Materials. 2019;48: 2418. https://doi.org/10.1007/s11664-019-07000-4

Morley S., Emde M., Zahn D. R. T., … Poole I. B. Optical spectroscopy of epitaxial Ga2Se3 layers from the far infrared to the ultraviolet. Journal of Applied Physics. 1996;79: 3196–3199. https://doi.org/10.1063/1.361264

El-Rahman K. F. Charge conduction mechanisms and photovoltaic properties of n-(Ga2S3 – Ga2Se3)/p-Si heterojunctions. The European Physical Journal Applied Physics. 2007;37(2): 143–147. https://doi.org/10.1051/epjap:2007004

Kuzubov S. V., Kotov G. I., Synorov, Yu. V. Gallium vacancy ordering in Ga2Se3 thin layers on Si(100), Si(111), and Si(123) substrates. Crystallography Reports. 2017;62(5): 768–772. https://doi.org/10.1134/s1063774517050121

Budanov A. V., Vlasov Y. N., Kotov G. I., Rudnev E. V., Mikhailyuk E. A. Deep levels in Ga2Se3/GaP (111) heterostructures. Chalcogenide Letters. 2018;15(8): 425–428. Available at: https://chalcogen.ro/425_BudanovAV.pdf

Budanov A. V., Vlasov Yu. N., Kotov G. I., Burtsev A. A., Rudnev E. V. Photosensitivity of In2Se3/InAs heterostructures*. In: Actual problems in micro- and nanoelectronics. Interuniversity collection of scientific papers: Voronezh-2022. 2022: 24–30. (In Russ.). Available at: https://catalog.inforeg.ru/Inet/GetEzineByID/33862

Bezryadin N. N., Kotov G. I., Kubuzov S. V., Vlasov Yu. N. Surface phase of Ga2Se3 on GaP (111). Condensed Matter and Interfaces. 2013;15: (4): 382–386. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=20931229

Pardo M., Tomas A., Guittard M. Polymorphisme de Ga2S3 et diagramme de phase Ga – S. Materials Research Bulletin. 1987;22(12): 1677–1684. https://doi.org/10.1016/0025-5408(87)90011-0

Pardo M., Guittard M., Chilouet A., Tomas A. Diagramme de phases gallium – soufre et etudes structurales des phases solides. Journal of Solid State Chemistry. 1993;102(2): 423–433. https://doi.org/10.1006/jssc.1993.1054

Volkov V. V., Sidey V. I., Naumov A. V., ... Zavrazhnov A. Yu. Structural identification and stabilization of the new high-temperature phases in A(III) – B(VI) systems (A = Ga, In, B = S, Se). Part 1: High-temperature phases in the Ga – S system. Journal of Alloys and Compounds. 2022;899: 163264. https://doi.org/10.1016/j.jallcom.2021.163264

Ho C. H. Ga2Se3 defect semiconductors: the study of direct band edge and optical properties. ACS Omega. 2020;29(5): 18527–18534. https://doi.org/10.1021/acsomega.0c02623

Shi C., Yang B., Hu B., Du1 Y., Yao S. Thermodynamic description of the Al–X (X = S, Se, Te) systems. Journal of Phase Equilibria and Diffusion. 2019;40: 392–402. https://doi.org/10.1007/s11669-019-00733-z

Chen G., Drennan Z. G., Zou J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small. 2014;14(10): 2747–2765. https://doi.org/10.1002/smll.201400104

Brezhnev N. Y., Dorokhin M. V., Zavrazhnov A. Y., Kolyshkin N. A., Nekrylov I. N., Trushin V. N. High-temperature gallium sesquisulfides and a fragment of the T-x diagram of the Ga – S system with these phases. Condensed Matter and Interphases. 2024;26(2):225–237. https://doi.org/10.17308/kcmf.2024.26/11936

Likforman A., Fourcroy P.-H., Guittard M., Flahaut J., Poirier R., Szydlo N. Transitions de la forme de haute température a de In2Se3, de part et d’autre de la température ambiante. Journal of Solid State Chemistry. 1980;33(1): 91–97. https://doi.org/10.1016/0022-4596(80)90551-4

Davydov S. Yu., Kobyakov I. B. Dependence of elastic constants of zinc sulfide on the phase composition of wurtzite/sphalerite*. Soviet Physics: Thechnical Physics. 1983;53(2): 377–379. (In Russ.). Available at: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid= jtf&paperid=2201&option_lang=rus

Brezhnev N. Yu. Ga-S and In-Se systems: crystal structure of intermediate phases and T-x diagrams*. Cand. chem. sci. diss. Voronezh, 2023. 189 p. Available at: https://rusneb.ru/catalog/000199_000009_012131968/

Lutz D, Fischer M., Baldus H.-P., Blachnik R. Zur polymorphie des In2Se3. Journal of the Less Common Metals. 1988;143: 83–92. https://doi.org/10.1016/0022-5088(88)90033-1

Pfitzner A., Lutz H. D. Redetermination of the crystal structure of g-In2Se3 by twin crystal X-ray method. Journal of Solid State Chemistry. 1996;124: 305–308. https://doi.org/10.1006/jssc.1996.0241

Manolikas C. New results on the phase transformations of In2Se3. Journal of Solid State Chemistry. 1988;74: 319–328. https://doi.org/10.1016/0022-4596(88)90361-1

Landuyt J., Tendeloo G., Amelinckx S. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Physica Status Solidi (a). 1975;30: 299–302. https://doi.org/10.1002/pssa.2210300131

Ye J., Yoshida T, Nakamura Y.; Nittono O. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Applied Physics Letters. 1995;67(21): 3066–3068. https://doi.org/10.1063/1.114866

Kojima N., Morales C., Ohshita T., Yamaguchi M. Ga2Se3 and (InGa)2Se3 as novel buffer layers in the GaAs on Si system. AIP Conference Proceedings. 2013;1556(1): 38–40. https://doi.org/10.1063/1.4822194

Küpers M., Konze P. M., Meledin A., … Dronskowski R. Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of a-In2Se3. Inorganic Chemistry. 2018;57(18): 11775–11781. https://doi.org/10.1021/acs.inorgchem.8b01950

Popovic S., Celustka B., Bidjin D. X-ray diffraction measurement of lattice parameters of In2Se3. Physica Status Solidi (a). 1971;6(1): 301–304. https://doi.org/10.1002/pssa.2210060134

Likforman A., Guittard M., Tomas A., Mise en evidence d’une solution de type spinelle dans le diagramme de phase du systeme In – S. Journal of Solid State Chemistry. 1980;34(3): 353–359. https://doi.org/10.1016/0022-4596(80)90434-X

Kosyakov A. V., Zavrazhnov A. Yu., Naumov A. V. Refinement of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Inorganic Materials. 2010;46(4): 343–345. https://doi.org/10.1134/s0020168510040035

Kosyakov A. V., Zavrazhnov A. Y., Naumov A. V., Sergeyeva A. V. Specification of the phase diagram of system In - S according to spectrophotometric researches of balance between sulfide of indium and hydrogen. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy”. Series: Chemistry. Biology. Pharmacy. 2009;2: 28–39. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=12992199

Zavrazhnov A. Y., Naumov A. V., Anorov P. V., … Pervov V. S. T-x phase diagram of the In-S system. Inorganic Materials. 2006:42: 1294–1298. https://doi.org/10.1134/S0020168506120028

Naumov A. V., Sergeeva A. V., Semenov V. N. Structure and reflection spectra of In3‑xS4(111)/mono-Si and In3–xS4(111)/SiO2/mono-Si films. Inorganic Materials. 2015;51(12): 1205–1212. https://doi.org/10.1134/S0020168515110060

Naumov A. V., Sergeeva A. V., Semenov V. N. Oriented In3–xS4 films on the (100) surface of Si, GaAs, and InP single crystals. Inorganic Materials. 2017;53(6): 560–567. https://doi.org/10.1134/S0020168517060127

Pistor P., Alvarez J. M., Leon M., di Michiel M. Structure reinvestigation of a-, b- and g-In2S3. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 2016;72(3): 410–415. https://doi.org/10.1107/S2052520616007058

Bartzokas D., Manolikas C. Spyridelis J. Electron microscopic study of the destabilization of stabilized g-phase of indium sesquisulphide. Physica Status Solidi (a). 1978;47(2): 459–467. https://doi.org/10.1002/pssa.2210470216

Diehl R., Carpentier C. D., Nitsche R. The crystal structure of g-In2S3 stabilized by As or Sb. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1976;32(4): 1257–1260. https://doi.org/10.1107/s0567740876005062

Liu K., Dai L., Li H., Hu H, … Hong M. Evidences for phase transition and metallization in b−In2S3 at high pressure. Chemical Physics. 2019;524: 63–69. https://doi.org/10.1016/j.chemphys.2019.04.025

Jebasty R. M., Sjastad A. O., Vidya R. Prediction of intermediate band in Ti/V doped g‑In2S3. RSC Advances. 2022;12(3): 1331–1340. https://doi.org/10.1039/d0ra08132a

Berezin S. S., Berezina M. V., Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Sidei V. I. Phase transformations of indium mono- and sesquisulfides studied by a novel static thermal analysis technique. Inorganic Materials. 2013;49(6): 555–563. https://doi.org/10.1134/S0020168513060010

Zavrazhnov A. Y., Kosyakov A. V., Naumov A. V., Sergeeva A. V., Berezin S. S. Study of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Thermochimica Acta. 2013;566(20): 169–174. https://doi.org/10.1016/j.tca.2013.05.031

Depeursinge Y., Electronic properties of the layer III–VI semiconductors. A comparative study. Il Nuovo Cimento B Series 11. 1981;64: 111–150. https://doi.org/10.1007/BF02721299

Jie W., Hao J. Two-dimensional layered gallium selenide: preparation, properties and applications. In: Advanced 2D Materials. Tiwari A., Syväjärvi M. (eds.). New York: Wiley; 2016: 1–36. 514 p. https://doi.org/10.1002/9781119242635.ch1

Schluter M., Camassel J., Kohn S., … Cohen M. L. Optical properties of GaSe and GaSxSe1−x mixed crystals. Physical Review B. 1976;13(8): 3534–3547. https://doi.org/10.1103/PhysRevB.13.3534

Liu F., Shimotani H., Shang H., … Drummond N. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano. 2014;8(1): 752–760. https://doi.org/10.1021/nn4054039

Edwards D. F. Gallium telluride (GaTe). In: Handbook of Optical Constants of Solids. Palik E. D. (ed.). Amsterdam: Elsevier; 1997. p. 489–505. https://doi.org/10.1016/b978-012544415-6/50114-x

Grygorchak I., Voitovych S., Stasyuk I., Velychko O., Menchyshyn O. Electret effect in intercalated crystals of the AIIIBVI group. Condensed Matter Physics. 2007;10(1): 51–60. https://doi.org/10.5488/CMP.10.1.51

Rajapakse M., Karki B., Abu U. O., …Yu M. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Materials and Applications. 2021;5: Article-30. https://doi.org/10.1038/s41699-021-00211-6

Nekrasov O. V., Zavrazhnov A. Yu., Semenov, V. N. Dolgopolova E. A., Averbakh E. M. Incorporation of HNO3 into GaSe and InSe*. Inorganic Materials 1994;30(6): 737–740. (In Russ.). Available at: https://elibrary.ru/item.asp?id=28934301

Zavrazhnov A. Yu., Turchen D. N., Semenov V. N. Zlomanov V. P, Pervov V. S. Oxidizing intercalation of layered structures. Materials Technology. 2000;15(2): 155–160. https://doi.org/10.1080/10667857.2000.11752872

Zavrazhnov A. Yu., Nekrasov O. V., Averbakh E. M. Falkengof A. T. On the possibility of insertion of some organic molecules into GaSe and InSe*. Inorganic Materials. 1994;30(6): 1030–1032. (In Russ.). Available at: https://elibrary.ru/item.asp?id=29831583

Vela Y. G., Juan D., Dicorato S., Losurdo M. Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films. Optics Express, 2022;30: 15. https://doi.org/10.1364/OE.459815

Zavrazhnov A. Yu., Turchen D. N. Oxidative insertion into GaSe-type structures*. Condensed Matter and Interphase. 1999;1(2): 190–196. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=24120596

Motter J. P., Koski K. J. Cui Y. General strategy for zero-valent intercalation into two-dimensional layered nanomaterials. Chemistry of Materials. 2014;26: 2313–2317. https://doi.org/10.1021/cm500242h

Turchen D. N., Zavrazhnov A. Yu., Goncharov E. G., Suvorov A.V . Nonstoichiometry research for the low-volatilaty phases. Homogeneity region of GaSe*. Russian Journal of General Chemistry. 1998;68(6): 920–925. (In Russ.). Available at: https://elibrary.ru/ynceoh

Turchen D. N., Zavrazhnov A. Yu., Prigorodova T. V. Scanning of T-x-projections of phase microdiagrams based on the gas solubility in melts*. Russian Journal of General Chemistry. 1999;69(5): 1–8. (In Russ.).

Ikram R., Jan B. M., Ahmad W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology. 2020;9(5): 11587–11610. https://doi.org/10.1016/j.jmrt.2020.08.050

Julien C., Nazri G. A. Intercalation compounds for advanced lithium batteries. Chapter 3. In: Handbook of Advanced Electronic and Photonic Materials and Devices. H. S. Nalwa (ed.). USA. Academic Press; 2001;10: 99–181. https://doi.org/10.1016/b978-012513745-4/50083-4

Ng B., Wong C., Niu W., … Tsang S. Molecular layer-by-layer re-stacking of MoS2–In2Se3 by electrostatic means: assembly of a new layered photocatalyst. Materials Chemistry Frontiers. 2023;7(5): 937–945. https://doi.org/10.1039/D2QM01095J

Karpov V. V., Bandura A. V., Evarestov R. A. Nonempirical calculations of the structure and stability of nanotubes based on gallium monochalcogenides. Physics of the Solid State. 2020;62(6): 1017–1023. https://doi.org/10.1134/S1063783420060116

Xu K., Yin L., Huang Y. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale. 2016;8(38): 16802-16818. https://doi.org/10.1039/C6NR05976G

Abd-Elkader O. H., Abdelsalam H., Sakr M. A., Teleb N. H., Zhang Q. Electronic and optical properties of finite gallium sulfide nano ribbons: a first-principles study. Crystals. 2023;1215: 13. https://doi.org/10.3390/cryst13081215

Ren D., Merdrignac-Conanec O., Dorcet V., ... Zhang X. In situ synthesis and improved photoelectric performances of a Sb2Se3/b-In2Se3 heterojunction composite with potential photocatalytic activity for methyl orange degradation. Ceramics International. 2020;46(16): 25503–25511. https://doi.org/10.1016/j.ceramint.2020.07.021

Ambrosi A., Pumera A. Exfoliation of layered materials using electrochemistry. Chemical Society Reviews. 2018;47: 7213–7224. https://doi.org/10.1039/c7cs00811b

Wang T., Wang J., Wu J., Ma P., Su R., Zhou P. Near-infrared optical modulation for ultrashort pulse generation employing indium monosulfide (InS) two-dimensional semiconductor nanocrystals. Nanomaterials. 2019;9: 865. https://doi.org/10.3390/nano9060865

Shao M., Bie T., Yang L., … He L. Over 21% efficiency stable 2D perovskite solar cells Advanced Materials. 2022;34: 2107211. https://doi.org/10.1002/adma.202107211

Harvey A., Backes C., Gholamvand Z., Hanlon D., McAteer D. Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts. Chemistry of Materials. 2015;27: 3483–3493. https://doi.org/10.1021/acs.chemmater.5b00910

Zhang C., Park S. H., Ronan O. ... Nicolosi V. Enabling flexible heterostructures for Li-ion battery an-odes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small, 2017;13(34): 1701677. https://doi.org/10.1002/smll.2017016

Ahmed S., Cheng P.K., Qiao J. Nonlinear optical activities in two-dimensional gallium sulfide: a comprehensive study. ACS Nano. 2022;16(8): 12390–12402 https://doi.org/10.1021/acsnano.2c03566

Zappia M. I., Bianca G., Bellani S., Curreli N. Two-dimensional gallium sulfide nanoflakes for UV-selective photoelectrochemical-type photodetectors. The Journal of Physical Chemistry C. 2021;125(22):11857–11866. https://doi.org/10.1021/acs.jpcc.1c03597

Opoku F., Akoto O., Asare-Donkor N. K., Adimado A. A. Defect-engineered two-dimensional layered gallium sulphide molecular gas sensors with ultrahigh selectivity and sensitivity. Applied Surface Science. 2021;562: 150188. https://doi.org/10.1016/j.apsusc.2021.150188

Lu Y., Warner J. H. Synthesis and applications of wide bandgap 2D layered semiconductors reaching the green and blue wavelengths. ACS Applied Electronic Materials. 2020;7(2): 1777–1814. https://doi.org/10.1021/acsaelm.0c00105

Côté M., Cohen M. L., Chadi J. D. GaSe nanotubes. Physical Review B. 1998;58: R4277. https://doi.org/10.1103/PhysRevB.58.R4277

Seral-Ascaso A., Metel S., Pokle A. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes. Nanoscale. 2016;8: 11698–11706. https://doi.org/10.1039/C6NR01663D

Petroni E., Lago E., Bellani S. Liquid-phase exfoliated indium-selenide flakes and their application in hydrogen evolution reaction. Small. 2018;26(14): e1800749. https://doi.org/10.1002/smll.201800749

Shi G., Kioupakis E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Letters. 2015;15:6926. https://pubs.acs.org/doi/10.1021/acs.nanolett.5b02861

Wasala M., Sirikumara H. I., Raj Sapkota Y., … Talapatra S. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds. Journal of Materials Chemistry C. 2017;43(5): 11214–11225. https://pubs.acs.org/10.1039/c7tc02866k

Yüksek M., Elmali A., Karabulut M. Nonlinear absorption in undoped and Ge doped layered GaSe semiconductor crystals. Applied Physics B. 2010;98: 77–81. https://doi.org/10.1007/s00340-009-3665-y

Zhou X., Cheng J., Zhou Y., ... Yu D. Strong second-harmonic generation in atomic layered GaSe. American Chemical Society. 2015;137(25): 7994–7997. https://doi.org/10.1021/jacs.5b04305

Hu L., Huang X., Wei D. Layer-independent and layer-dependent nonlinear optical properties of two-dimensional GaX (X = S, Se, Te) nanosheets. Physical Chemistry Chemical Physics. 2017;19(18): 11131–11141. https://doi.org/10.1039/c7cp00578d

Gan X. T., Zhao C., Hu S. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light: Science and Applications. 2018;7: 17126. https://doi.org/10.1038/lsa.2017.126

Karatay A., Yuksek M., Ertap H., Elmali A., Karabulut M. Enhancing the blue shift of SHG signal in GaSe:B/Ce crystal. Optics and Laser Technology. 2018;99: 392–395. https://doi.org/10.1016/j.optlastec.2017.09.027

Yuan Q., Fang L., Fang H., ... Gan X. Second harmonic and sum-frequency generations from a silicon metasurface integrated with a two-dimensional material. ACS Photonics. 2019;6: 2252–2259. https://doi.org/10.1021/acsphotonics.9b00553

Fernelius N. Properties of gallium selenide single crystal. Progress in Crystal Growth and Characterization of Materials. 1994;28(4): 275–353. https://doi.org/10.1016/0960-8974(94)90010-8

Sarkisov S. Yu., Mikhailov T. A., Bereznaya S. A., Korotchenko Z. V., Redkin R. A. Nonlinear optical element based on a GaSe single crystal with a double-sided antireflection coating for generating terahertz radiation*. Patent RF: No. 193143U1. Publ. 15.10.2019, bull. No. 29. (In Russ.) Available at: https://patents.google.com/patent/RU193143U1/ru

Lubenko D. M., Ezhov D. M., Losev V. F., Andreev Yu. M., Lanskii G. V. IR-to-THz down conversion in nonlinear GaSe:Al crystals. Bulletin of the Russian Academy of Sciences: Physics. 2020;84(7): 780–782. https://doi.org/10.3103/s1062873820070163

Kul’chitskii N. A., Naumov A. V. Modern state of markets of selenium and selenium-based compounds. Izvestiya Vuzov. Tsvetnaya Metallurgiya (Proceedings of Higher Schools. Nonferrous Metallurgy). 2015;3: 40–48. https://doi.org/10.17073/0021-3438-2015-3-40-48

Gershenzon E. G. Submillimeter spectroscopy*. Sorosovskij obrazovatel’nyj zhurnal. Serija Fizika. Physics Series. 1998;4: 78–85. (In Russ.). Avalable at: https://www.pereplet.ru/obrazovanie/stsoros/533.html

Song M., An N., Zou Y. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection. Frontiers of Physics. 2023;18: 52302. https://doi.org/10.1007/s11467-023-1277-3

Yan D., Xu D., Wang Y., Zhong K., Tunable J. High-repetition-rate, tunable and coherent mid-infrared source based on difference frequency generation from a dual-wavelength 2 µm laser and GaSe crystal. Laser Physics. 2018;28(12): 126205. https://doi.org/10.1088/1555-6611/aae060

Rao Z., Wang X., Lu Y. Tunable terahertz generation from one CO2 laser in a GaSe crystal. Optics Communications. 2011;23(284): 5472–5474. https://doi.org/10.1016/j.optcom.2011.08.009

Gamal G. A., Azad M. A. Photoelectric studies of gallium monosulfide single crystals. Journal of Physics and Chemistry of Solids. 2005;66(1): 5–10. https://doi.org/10.1016/j.jpcs.2004.06.011

Qasrawi A. F., Gasanly N. M. Carrier transport properties of InS single crystals. Crystal Research and Technology. 2002;37: 1104. https://doi.org/10.1002/1521-4079(200210)37:10<1104::AID-CRAT1104>3.0.CO;2-A

Ayddinli A., Gasanly N. M., Uka A. Anharmonicity in GaTe layered crystals. Crystal Research and Technology. 2002;37(12): 1303–1309. https://doi.org/10.1002/crat.200290006

Ahmad H., Azali N., Yusoff N. Layered gallium telluride for inducing mode-locked pulse laser in thulium/holmium-doped fiber. Luminescence, 2022;248: 119002. https://doi.org/10.1016/j.jlumin.2022.119002

Опубликован
2024-10-18
Как цитировать
Завражнов, А. Ю., Брежнев, Н. Ю., Некрылов, И. Н., Косяков, А. В., & Кострюков, В. Ф. (2024). Фазы со слоистыми (AB) и «дефектными» (A2B3) структурами в системах AIII–BVI Часть 1. Структурное своеобразие и свойства объемных образцов и пленок. Обзор. Конденсированные среды и межфазные границы, 26(4), 646-665. https://doi.org/10.17308/kcmf.2024.26/12398
Раздел
Обзор

Наиболее читаемые статьи этого автора (авторов)