SYNTHESIS AND CHARACTERIZATION OF SrF2:Yb:Tm POWDERS

  • Juliya А. Ermakova graduate student, Junior Researcher, A. M. Prokhorov General Physics Institute RAS; ph.: +7 (499) 5038721, e-mail: julia.r89@mail.ru
  • Sergey V. Kuznetsov Cand. Sci. (Chem.), Senior Researcher, A. M. Prokhorov General Physics Institute RAS; ph.: +7 (499) 5038721, e-mail: kouznetzovsv@gmail.com
  • Mariya N. Mayakova Junior Researcher, A. M. Prokhorov General Physics Institute RAS; ph.: +7 (499) 5038371, e-mail: mn.mayakova@gmail.com
  • Valeriy V. Voronov Cand. Sci. (Phys.-Math.), Laboratory Head, A. M. Prokhorov General Physics Institute RAS; ph.: +7 (499) 5038377, e-mail: voronov@lst.gpi.ru
  • Roman P. Ermakov Cand. Sci. (Phys.-Math.), Scientific Researcher, Fiber Optics Research Center RAS; ph.: +7 (499) 5038309, e-mail: x-ray_diffraction@mail.ru
  • Pavel P. Fedorov Dr. Sci. (Chem.), Full Professor, Laboratory Head, A. M. Prokhorov General Physics Institute RAS; ph.: +7 (499) 5038292, e-mail: ppfedorov@yandex.ru
Keywords: inorganic fluorides, strontium fluoride, solid solutions, rare earth elements

Abstract

This paper discloses the results of synthesis of Sr1-x-yYbxTmyF2+x+y (x = 0.010–0.300; y = 0.001–0.060) solid solutions by various precipitation techniques, including so-called direct method, reverse method and simultaneous precipitation with different fluorinating agents (ammonium fluoride or hydrofluoric acid). Use of ammonium fluoride as the fluoride-ion source for precipitation in direct or reverse method protocols resulted in the phase separation in the formed solid solutions with general concentration of rare-earth elements (REE) varied within the following range: 0.10<x+y<0.24. Such solid solution precipitates possessed similar structures, but their lattice unit cell parameters were slightly different within the aforementioned concentration range. Heat treatment of samples at 600 ºC led to the sintered solid solutions with homogeneously distributed chemical composition. Precipitation by so-called simultaneous method did not produce multiple phase mixtures for any composition ratio. Use of hydrofluoric acid as fluorinating agent produced multiphase precipitates having much larger differences for the different phase crystal lattice parameter values than the differences for the specimens synthesized with the use of NH4F. In contrast with NH4F-precipitated fluoride samples, annealing the HF-precipitated specimens at 600 ºC did not result in formation of sintered solid solutions with homogeneous distribution of chemical composition. Analysis of the change of the crystal lattice parameters vs. REE concentration for various thermal treatment conditions has shown that increase of REE concentration was accompanied by the simultaneous increase of NH4+-ion concentrations in the strontium fluoride lattice. Lattice constants of strontium fluoride-based phases went up with the increase of NH4+ ion concentration and decreased with the growth of Yb and Tm concentrations, respectively. The present paper also discusses thermal treatment of the formed precipitates, which resulted in their thermolysis, as well as the microstructure of the samples prepared by the different synthetic techniques.

ACKNOWLEDGEMENTS

The authors thank A. E. Baranchikov and V. K. Ivanov for the characterization of the samples by scanning electron microscopy. The work was supported by grant Russian Foundation for Basic Research no. 16-32-00654-mol_a.

Downloads

Download data is not yet available.

References

1. Fedorov P. P., Luginina A. A., Kuznetsov S. V., Osiko V. V. J. Fluor.Chem., 2011, vol. 132, pp. 1012–1039. DOI:10.1016/j.jfluchem.2011.06.025
2. Tressaud A., Poeppelmeier K. Photonic & Electronic Properties of Fluoride Materials. Elsevier, 2016, Ed. 1, p. 534.
3. Teinz K., Wuttke S., Börno F., Eicher J., Kemnitz E. J. Catalys., 2011, vol. 282, pp. 175–182. DOI:10.1016/j.jcat.2011.06.013
4. Schmidt L., Emmerling F., Kirmse H., Kemnitz E. RSC Adv., 2014, vol. 4, pp. 32–38. DOI: 10.1039/c3ra43769h
5. He X., Wang K., Cheng Z. WIREs Nanomedicine and Nanobiotechnology, 2010, vol. 2, pp. 349–366. DOI: 10.1002/wnan.85
6. Du Y. P., Sun X., Zhang Y. W., Yan Z. G., Sun L. D., Yan C. H. Cryst. Growth Des., 2009, vol. 9, pp. 2013–2019. DOI: 10.1021/cg801371r
7. Chen D., Yu Y., Huang F., Huang P., Yang A., Wang Y. J. Am. Chem. Soc.,2010, vol. 132, pp. 9976–9978. DOI: 10.1021/ja1036429
8. Zhang C., Hou Z., Chai R., Cheng Z., Xu Z., Li C., Huang L., Lin J. J. Phys. Chem., 2010, vol. 114, pp. 6928–6936. DOI: 10.1021/jp911775z
9. Peng J., Hou S., Liu X., Feng J., Yu X., Xing Y., Su Z. Mat. Res. Bull., 2012, vol. 47, pp. 328–332. DOI:10.1016/j.materresbull.2011.11.030
10. Yagoub M. Y. A., Swart H. C., Noto L. L., O`Connel J. H., Lee M. E., Coetsee E. J. Lumin., 2014, vol. 156, pp. 150–156. DOI:10.1016/j.jlumin.2014.08.014
11. Jin Y., Qin W., Zhang J. J. Fluor. Chem., 2008, vol. 129, pp. 515–518. DOI:10.1016/j.jfluchem.2008.03.010
12. Sun J., Xian J., Du H. Appl. Surf. Sci., 2011, vol. 257, pp. 3592–3595. DOI:10.1016/j.apsusc.2010.11.082
13. Sun J., Xian J., Zhang X., Du H. J. Rare Earth., 2011, vol. 29, pp. 32–38. DOI: 10.1016/S1002-0721(10)60396-1
14. Luginina A. A, Fedorov P. P., Kuznetsov S. V., Mayakova M. N., Osiko V. V., Ivanov V. K., Baranchikov A. E. Inorganic Materials, 2012. vol. 48, no. 5, с. 531–538. DOI: 10.1134/S002016851205010X
15. Mayakova M. N., Luginina A. A., Kuznetsov S. V., Voronov V. V., Ermakov R. P., Baranchikov A. E., Ivanov V. K.,
Karban O. V., Fedorov P. P. Mendeleev Communications, 2014, vol. 24, pp. 360–362. DOI: 10.1016/j.mencom.2014.11.017
16. Rozhnova Yu. A., Luginina A. A., Voronov V. V., Ermakov R. P., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Arbenina V. V., Osiko V. V., Fedorov P. P. Mat. Chem. Phys., 2014, vol. 148, pp. 201–207. DOI: 10.1016/j.matchemphys.2014.07.032
17. Rozhnova Yu. A., Kuznetsov S. V., Luginina A. A., Voronov V. V., Ryabova A. V., Pominova D. V., Ermakov R. P., Usachev V. A., Kononenko N. E., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Mat. Chem. Phys., 2016, vol. 172, pp. 150–157. DOI:10.1016/j.matchemphys.2016.01.055
18. Rozhnova Yu. A., Kuznetsov S. V., Voronov V. V., Fedorov P. P. Condensed Matter and Interphases, 2016, vol. 18, no. 3, pp. 408–413. Available at: http://www.kcmf.vsu.ru/resources/t_18_3_2016_012.pdf
19. Vahrenev R. G., Mayakova M. N., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Fedorov P. P. Condensed Matter and Interphases, 2016, vol. 18, no.4, pp. 478–484. Available at: http://www.kcmf.vsu.ru/resources/t_18_4_2016_005.pdf
20. Sobolev B. P., Seiranian K. B., Garashina L. S., Fedorov P. P. J. Solid State Chem., 1979, vol. 28, pp. 51–58. DOI:10.1016/0022—4596(79)90057—4
Published
2017-11-06
How to Cite
ErmakovaJ. А., Kuznetsov, S. V., Mayakova, M. N., Voronov, V. V., Ermakov, R. P., & Fedorov, P. P. (2017). SYNTHESIS AND CHARACTERIZATION OF SrF2:Yb:Tm POWDERS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(1), 57-67. https://doi.org/10.17308/kcmf.2017.19/177
Section
Статьи